26 research outputs found
Recommended from our members
Enabling an Anode-Free Sodium All-Solid-State Battery
Anode-free batteries possess the optimal cell architecture due to their reduced weight, volume, and cost. However, their implementation has been limited by unstable anode morphological changes and anode-liquid electrolyte interface reactions. An electrochemically stable solid electrolyte can solve these issues by enabling the deposition of dense sodium metal. Furthermore, a novel type of aluminum current collector can achieve intimate solid-solid contact with the solid electrolyte which allows highly reversible sodium plating and stripping at both high areal capacities and current densities, previously unobtainable with conventional aluminum foil. A sodium anode-free all-solid-state battery full-cell is demonstrated with stable cycling for several hundred cycles. This cell architecture serves as a future direction for other battery chemistries to enable low-cost, high-energy-density, and fast charging batteries
Quantitative Analysis of Sodium Metal Deposition and Interphase in Na Metal Batteries
Sodium-ion batteries exhibit significant promise as a viable alternative to
current lithium-ion technologies owing to their sustainability, low cost per
energy density, reliability, and safety. Despite recent advancements in cathode
materials for this category of energy storage systems, the primary challenge in
realizing practical applications of sodium-ion systems is the absence of an
anode system with high energy density and durability. Although Na metal is the
ultimate anode that can facilitate high-energy sodium-ion batteries, its use
remains limited due to safety concerns and the high-capacity loss associated
with the high reactivity of Na metal. In this study, titration gas
chromatography is employed to accurately quantify the sodium inventory loss in
ether- and carbonate-based electrolytes. Uniaxial pressure is developed as a
powerful tool to control the deposition of sodium metal with dense morphology,
thereby enabling high initial coulombic efficiencies. In ether-based
electrolytes, the Na metal surface exhibits the presence of a uniform solid
electrolyte interphase layer, primarily characterized by favorable inorganic
chemical components with close-packed structures. The full cell, utilizing a
controlled electroplated sodium metal in ether-based electrolyte, provides
capacity retention of 91.84% after 500 cycles at 2C current rate and delivers
86 mAh/g discharge capacity at 45C current rate, suggesting the potential to
enable Na metal in the next generation of sodium-ion technologies with
specifications close to practical requirements
Recommended from our members
Design principles for enabling an anode-free sodium all-solid-state battery
Anode-free batteries possess the optimal cell architecture due to their reduced weight, volume and cost. However, their implementation has been limited by unstable anode morphological changes and anodeâliquid electrolyte interface reactions. Here we show that an electrochemically stable solid electrolyte and the application of stack pressure can solve these issues by enabling the deposition of dense sodium metal. Furthermore, an aluminium current collector is found to achieve intimate solidâsolid contact with the solid electrolyte, which allows highly reversible sodium plating and stripping at both high areal capacities and current densities, previously unobtainable with conventional aluminium foil. A sodium anode-free all-solid-state battery full cell is demonstrated with stable cycling for several hundred cycles. This cell architecture serves as a future direction for other battery chemistries to enable low-cost, high-energy-density and fast-charging batteries
Recommended from our members
Evaluating ElectrolyteâAnode Interface Stability in Sodium All-Solid-State Batteries
All-solid-state batteries have recently gained considerable attention due to their potential improvements in safety, energy density, and cycle-life compared to conventional liquid electrolyte batteries. Sodium all-solid-state batteries also offer the potential to eliminate costly materials containing lithium, nickel, and cobalt, making them ideal for emerging grid energy storage applications. However, significant work is required to understand the persisting limitations and long-term cyclability of Na all-solid-state-based batteries. In this work, we demonstrate the importance of careful solid electrolyte selection for use against an alloy anode in Na all-solid-state batteries. Three emerging solid electrolyte material classes were chosen for this study: the chloride Na2.25Y0.25Zr0.75Cl6, sulfide Na3PS4, and borohydride Na2(B10H10)0.5(B12H12)0.5. Focused ion beam scanning electron microscopy (FIB-SEM) imaging, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) were utilized to characterize the evolution of the anodeâelectrolyte interface upon electrochemical cycling. The obtained results revealed that the interface stability is determined by both the intrinsic electrochemical stability of the solid electrolyte and the passivating properties of the formed interfacial products. With appropriate material selection for stability at the respective anode and cathode interfaces, stable cycling performance can be achieved for Na all-solid-state batteries
Recommended from our members
A Facile, Dry-Processed Lithium Borate-Based Cathode Coating for Improved All-Solid-State Battery Performance
Sulfide-based solid electrolytes are known to have narrow electrochemical windows which limit their practical use in all-solid-state batteries (ASSBs). Specifically, when paired with a high-voltage transition metal oxide (TMO) cathode, the electrolyte will typically undergo unwanted degradation via chemical reactions or electrochemical oxidation, especially upon charging to voltages beyond the electrochemical stability window of the electrolyte. To mitigate these undesired reactions, thin (<10 nm), conformal, ionically-conducting, and electronically-insulating oxide-based protective coating layers have been applied on the cathode, typically via a solution process. In this work, a lithium borate-based (LBO) coating, prepared instead with a dry coating process, was shown to have the same beneficial properties. As evidenced by electrochemical characterization, the developed LBO coating shows good cycling performance and even performs better than the LiNbO3 coating commonly used in the literature. This new solvent-free coating method can thus be used to fabricate longer-lasting ASSBs
Recommended from our members
A Facile, Dry-Processed Lithium Borate-Based Cathode Coating for Improved All-Solid-State Battery Performance
Sulfide-based solid electrolytes are known to have narrow electrochemical windows which limit their practical use in all-solid-state batteries (ASSBs). Specifically, when paired with a high-voltage transition metal oxide (TMO) cathode, the electrolyte will typically undergo unwanted degradation via chemical reactions or electrochemical oxidation, especially upon charging to voltages beyond the electrochemical stability window of the electrolyte. To mitigate these undesired reactions, thin (<10 nm), conformal, ionically-conducting, and electronically-insulating oxide-based protective coating layers have been applied on the cathode, typically via a solution process. In this work, a lithium borate-based (LBO) coating, prepared instead with a dry coating process, was shown to have the same beneficial properties. As evidenced by electrochemical characterization, the developed LBO coating shows good cycling performance and even performs better than the LiNbO3 coating commonly used in the literature. This new solvent-free coating method can thus be used to fabricate longer-lasting ASSBs
Fabrication of High-Quality Thin Solid-State Electrolyte Films Assisted by Machine Learning
International audienceSolid-state electrolytes (SSEs) are promising candidates to circumvent flammability concerns of liquid electrolytes. However, enhancing energy densities by thinning SSE layers and enabling scalable coating processes remain challenging. While previous studies have addressed thin and flexible SSEs, mainly ionic conductivity was considered for performance evaluation, and no systematic research on the effects of manufacturing conditions on the quality of SSE films was performed. Here, both uniformity and ionic conductivity are considered for evaluating the SSE films under the guidance of machine learning (ML). Three algorithms, principal component analysis, K-means clustering, and support vector machine, are employed to decipher the interdependencies between manufacturing conditions and film performance. Guided by ML, a 40 mu m SSE film with high ionic conductivity and good uniformity is used to construct a LiNi0.8Co0.1Mn0.1O2 parallel to Li6PS5Cl parallel to LiIn cell demonstrating 100 cycles. This study presents an efficient ML-assisted approach to optimize scalable production of high-quality SSE films
Recommended from our members
New insights into Li distribution in the superionic argyrodite Li6PS5Cl.
By using temperature-dependent neutron powder diffraction combined with maximum entropy method analysis, a previously unreported Li lattice site was discovered in the argyrodite Li6PS5Cl solid-state electrolyte. This new finding enables a more complete description of the Li diffusion model in argyrodites, providing structural guidance for designing novel high-conductivity solid-state electrolytes