7 research outputs found

    Aluminum Scrap to Hydrogen: Complex Effects of Oxidation Medium, Ball Milling Parameters, and Copper Additive Dispersity

    No full text
    An effective combination of oxidation medium, ball milling parameters, and copper additive disperstiy ensuring fast aluminum scrap reaction with high hydrogen yield, was suggested. Different milling parameters (5, 10, and 15 mm steel balls; 1 and 2 h; unidirectional and bidirectional rotation modes) were tested for Al-10 wt.% Cu (50–70 μm) composition. The samples milled with 5 (2 h) and 10 mm (1 and 2 h) balls contained undesirable intermetallic phases Al2Cu and Cu9Al4, while those activated with 15 mm balls (1 h) provided the second-finest powder and best preservation of the original Cu and Al phases. Among the tested (at 60 °C) 2 M solutions NaCl, LiCl, KCl, MgCl2, ZnCl2, BaCl2, CaCl2, NiCl2, CoCl2, FeCl2, and AlCl3, the first six appeared to be almost useless (below 4% hydrogen yield), the following four provided better results, and the ultimate 91.5% corresponded to AlCl3. Samples with Cu dispersity of 50–100 nm, 1–19, 50–70, and 150–250 μm, and with no additive, were milled under the optimal parameters and tested in AlCl3. Their total yields were similar (~90–94%), while reaction rates differed. The highest rate was obtained for the sample modified with 50–70 μm powder

    Aluminum Scrap to Hydrogen: Complex Effects of Oxidation Medium, Ball Milling Parameters, and Copper Additive Dispersity

    No full text
    An effective combination of oxidation medium, ball milling parameters, and copper additive disperstiy ensuring fast aluminum scrap reaction with high hydrogen yield, was suggested. Different milling parameters (5, 10, and 15 mm steel balls; 1 and 2 h; unidirectional and bidirectional rotation modes) were tested for Al-10 wt.% Cu (50–70 μm) composition. The samples milled with 5 (2 h) and 10 mm (1 and 2 h) balls contained undesirable intermetallic phases Al2Cu and Cu9Al4, while those activated with 15 mm balls (1 h) provided the second-finest powder and best preservation of the original Cu and Al phases. Among the tested (at 60 °C) 2 M solutions NaCl, LiCl, KCl, MgCl2, ZnCl2, BaCl2, CaCl2, NiCl2, CoCl2, FeCl2, and AlCl3, the first six appeared to be almost useless (below 4% hydrogen yield), the following four provided better results, and the ultimate 91.5% corresponded to AlCl3. Samples with Cu dispersity of 50–100 nm, 1–19, 50–70, and 150–250 μm, and with no additive, were milled under the optimal parameters and tested in AlCl3. Their total yields were similar (~90–94%), while reaction rates differed. The highest rate was obtained for the sample modified with 50–70 μm powder

    Enhanced Hydrogen Generation from Magnesium–Aluminum Scrap Ball Milled with Low Melting Point Solder Alloy

    No full text
    In this investigation, composite materials were manufactured of mixed scrap of Mg-based alloys and low melting point Sn–Pb eutectic by high energy ball milling, and their hydrogen generation performance was tested in NaCl solution. The effects of the ball milling duration and additive content on their microstructure and reactivity were investigated. Scanning electron microscopy (SEM) analysis indicated notable structural transformations of the particles during ball milling, and X-ray diffraction analysis (XRD) proved the formation of new intermetallic phases Mg2Sn and Mg2Pb, which were aimed to augment galvanic corrosion of the base metal. The dependency of the material’s reactivity on the activation time and additive content occurred to be non-monotonic. For all tested samples ball milling during the 1 h provided, the highest hydrogen generation rates and yields as compared to 0.5 and 2 h and compositions with 5 wt.% of the Sn–Pb alloy, demonstrated higher reactivity than those with 0, 2.5, and 10 wt.%

    Waste to Hydrogen: Elaboration of Hydroreactive Materials from Magnesium-Aluminum Scrap

    No full text
    Ball-milled hydroreactive powders of Mg-Al scrap with 20 wt.% additive (Wood’s alloy, KCl, and their mixture) and with no additives were manufactured. Their hydrogen yields and reaction rates in a 3.5 wt.% NaCl aqueous solution at 15–35 °C were compared. In the beginning of the reaction, samples with KCl (20 wt.%) and Wood’s alloy (10 wt.%) with KCl (10 wt.%) provided the highest and second-highest reaction rates, respectively. However, their hydrogen yields after 4 h were correspondingly the lowest and second-lowest percentages—(45.6 ± 4.4)% and (56.0 ± 1.2)% at 35 °C. At the same temperature, samples with 20 wt.% Wood’s alloy and with no additives demonstrated the highest hydrogen yields of (73.5 ± 10.0)% and (70.6 ± 2.5)%, correspondingly, while their respective maximum reaction rates were the lowest and second-lowest. The variations in reaction kinetics for the powders can be explained by the difference in their particle sizes (apparently affecting specific surface area), the crystal lattice defects accumulated during ball milling, favoring pitting corrosion, the morphology of the solid reaction product covering the particles, and the contradicting effects from the potential formation of reaction-enhancing microgalvanic cells intended to induce anodic dissolution of Mg in conductive media and reaction-hindering crystal-grain-screening compounds of the alloy and metal scrap components

    Waste to Hydrogen: Elaboration of Hydroreactive Materials from Magnesium-Aluminum Scrap

    No full text
    Ball-milled hydroreactive powders of Mg-Al scrap with 20 wt.% additive (Wood’s alloy, KCl, and their mixture) and with no additives were manufactured. Their hydrogen yields and reaction rates in a 3.5 wt.% NaCl aqueous solution at 15–35 °C were compared. In the beginning of the reaction, samples with KCl (20 wt.%) and Wood’s alloy (10 wt.%) with KCl (10 wt.%) provided the highest and second-highest reaction rates, respectively. However, their hydrogen yields after 4 h were correspondingly the lowest and second-lowest percentages—(45.6 ± 4.4)% and (56.0 ± 1.2)% at 35 °C. At the same temperature, samples with 20 wt.% Wood’s alloy and with no additives demonstrated the highest hydrogen yields of (73.5 ± 10.0)% and (70.6 ± 2.5)%, correspondingly, while their respective maximum reaction rates were the lowest and second-lowest. The variations in reaction kinetics for the powders can be explained by the difference in their particle sizes (apparently affecting specific surface area), the crystal lattice defects accumulated during ball milling, favoring pitting corrosion, the morphology of the solid reaction product covering the particles, and the contradicting effects from the potential formation of reaction-enhancing microgalvanic cells intended to induce anodic dissolution of Mg in conductive media and reaction-hindering crystal-grain-screening compounds of the alloy and metal scrap components

    Waste to Hydrogen: Elaboration of Hydroreactive Materials from Magnesium-Aluminum Scrap

    No full text
    Ball-milled hydroreactive powders of Mg-Al scrap with 20 wt.% additive (Wood’s alloy, KCl, and their mixture) and with no additives were manufactured. Their hydrogen yields and reaction rates in a 3.5 wt.% NaCl aqueous solution at 15–35 °C were compared. In the beginning of the reaction, samples with KCl (20 wt.%) and Wood’s alloy (10 wt.%) with KCl (10 wt.%) provided the highest and second-highest reaction rates, respectively. However, their hydrogen yields after 4 h were correspondingly the lowest and second-lowest percentages—(45.6 ± 4.4)% and (56.0 ± 1.2)% at 35 °C. At the same temperature, samples with 20 wt.% Wood’s alloy and with no additives demonstrated the highest hydrogen yields of (73.5 ± 10.0)% and (70.6 ± 2.5)%, correspondingly, while their respective maximum reaction rates were the lowest and second-lowest. The variations in reaction kinetics for the powders can be explained by the difference in their particle sizes (apparently affecting specific surface area), the crystal lattice defects accumulated during ball milling, favoring pitting corrosion, the morphology of the solid reaction product covering the particles, and the contradicting effects from the potential formation of reaction-enhancing microgalvanic cells intended to induce anodic dissolution of Mg in conductive media and reaction-hindering crystal-grain-screening compounds of the alloy and metal scrap components

    Aluminum-Alumina Composites: Part I: Obtaining and Characterization of Powders

    No full text
    The process of advanced aluminum-alumina powders production for selective laser melting was studied. The economically effective method of obtaining aluminum-alumina powdery composites for further selective laser melting was comprehensively studied. The aluminum powders with 10–20 wt. % alumina content were obtained by oxidation of aluminum in water. Aluminum oxidation was carried out at ≤200 °C. The oxidized powders were further dried at 120 °C and calcined at 600 °C. Four oxidation modes with different process temperatures (120–200 °C) and pressures (0.15–1.80 MPa) were investigated. Parameters of aluminum powders oxidation to obtain composites with 10.0, 14.5, 17.4, and 20.0 wt. % alumina have been determined. The alumina content, particle morphology, and particle size distribution for the obtained aluminum-alumina powdery composites were studied by XRD, SEM, laser diffraction, and volumetric methods. According to the obtained characteristics of aluminum-alumina powdery composites, they are suitable for the SLM process
    corecore