52,674 research outputs found

    AdS Strings with Torsion: Non-complex Heterotic Compactifications

    Get PDF
    Combining the effects of fluxes and gaugino condensation in heterotic supergravity, we use a ten-dimensional approach to find a new class of four-dimensional supersymmetric AdS compactifications on almost-Hermitian manifolds of SU(3) structure. Computation of the torsion allows a classification of the internal geometry, which for a particular combination of fluxes and condensate, is nearly Kahler. We argue that all moduli are fixed, and we show that the Kahler potential and superpotential proposed in the literature yield the correct AdS radius. In the nearly Kahler case, we are able to solve the H Bianchi using a nonstandard embedding. Finally, we point out subtleties in deriving the effective superpotential and understanding the heterotic supergravity in the presence of a gaugino condensate.Comment: 42 pages; v2. added refs, revised discussion of Bianchi for N

    A contribution to the discussion on the safety of air weapons

    Get PDF
    Firearms legislation in the UK stems from the Firearms Act 1968 with its definition of a firearm as a lethal barrelled weapon of any description. The Act allows certain exceptions to be held without licence, most notably air weapons although these are limited by The Firearms (Dangerous Air Weapons) Rules 1969 and related regulations to below 12 ft lb (16.3 J) for air rifles and below 6 ft lb (8.1 J) for air pistols. Despite this there are occasional fatalities, typically 1 or 2 each year in the UK, from legally owned air weapons. In the USA there are over 20,000 visits each year to emergency departments due to injuries from air weapons and paintball guns. Despite this, limited research appears to have been carried out into the safety of air weapons and the present study tries to address this.Fresh samples of animal tissue were obtained from an abattoir or butcher and were embedded in ballistic gelatin. Pig heart, lung, liver and shoulder were used. By firing pellets into gelatin alone and into the combination of the gelatin and animal tissue it was possible to compare gelatin as a model for these tissues. The depth of penetration was similar but the residual track appeared to remain more open in the animal tissue. Pellets penetrated completely through the organ, with total penetration of gelatin and organ being typically around 10–15 cm.Samples of pig, cow and chicken skin were placed in contact with the gelatin or embedded in the gelatin to simulate the effect of skin on penetration into a body. Chicken skin had no effect, pig skin stopped the pellet and cow skin was perforated by the pellet. If cow skin was embedded in the gelatin there was little effect on the total amount of penetration, but cow skin on the front surface of the gelatin reduced penetration by about 30%.Computed tomography was used to examine the pellet track and to calculate the volume of damage produced. However, due to the similar densities of gelatin and organ a technique had to be developed to differentiate phases. A barium salt paste was applied to outer surfaces and iodine solution or barium nitrate solution containing red food colouring was injected into the pellet track to enhance the contrast of the track. The track through the gelatin tended to enclose itself whereas the track through the organ remained more open, presumably due to the inhomogeneity of the fibrous nature of the tissue.Pellets were also fired at construction materials (wood, plasterboard and brick) and computed tomography used to determine the volume of damage created. Pellets perforated single layers of wood and plasterboard and would embed in a second layer. However, if the two layers were in contact the pellet did not penetrate the first layer. An air rifle pellet could therefore perforate house construction materials, although the resultant kinetic energy would be low and further damage would be limited.Some of the possible physical parameters are discussed that might help predict the degree of damage caused, but from this study it is not possible to define a limit which could be proposed as safe

    Variable dimension weighted universal vector quantization and noiseless coding

    Get PDF
    A new algorithm for variable dimension weighted universal coding is introduced. Combining the multi-codebook system of weighted universal vector quantization (WUVQ), the partitioning technique of variable dimension vector quantization, and the optimal design strategy common to both, variable dimension WUVQ allows mixture sources to be effectively carved into their component subsources, each of which can then be encoded with the codebook best matched to that source. Application of variable dimension WUVQ to a sequence of medical images provides up to 4.8 dB improvement in signal to quantization noise ratio over WUVQ and up to 11 dB improvement over a standard full-search vector quantizer followed by an entropy code. The optimal partitioning technique can likewise be applied with a collection of noiseless codes, as found in weighted universal noiseless coding (WUNC). The resulting algorithm for variable dimension WUNC is also described

    Effect of thermal cycling in a Mach 0.3 burner rig on properties and structure of directionally solidified gamma/gamma prime - delta eutectic

    Get PDF
    Tensile and stress rupture properties at 1040 C of a thermally cycled gamma/gamma prime - delta eutectic were essentially equivalent to the as-grown properties. Tensile strength and rupture life at 760 C appeared to decrease slightly by thermal cycling. Thermal cycling resulted in gamma prime coarsening and Widmanstatten delta precipitation in the gamma phase. An unidentified precipitate, presumably gamma prime, was observed within the delta phase. The eutectic alloy exhibited a high rate of oxidation-erosion weight loss during thermal cycling in the Mach 0.3 burner rig

    Exploratory investigation of sound pressure level in the wake of an oscillating airfoil in the vicinity of stall

    Get PDF
    Wind tunnel tests were performed on two oscillating two-dimensional lifting surfaces. The first of these models had an NACA 0012 airfoil section while the second simulated the classical flat plate. Both of these models had a mean angle of attack of 12 degrees while being oscillated in pitch about their midchord with a double amplitude of 6 degrees. Wake surveys of sound pressure level were made over a frequency range from 16 to 32 Hz and at various free stream velocities up to 100 ft/sec. The sound pressure level spectrum indicated significant peaks in sound intensity at the oscillation frequency and its first harmonic near the wake of both models. From a comparison of these data with that of a sound level meter, it is concluded that most of the sound intensity is contained within these peaks and no appreciable peaks occur at higher harmonics. It is concluded that within the wake the sound intensity is largely pseudosound while at one chord length outside the wake, it is largely true vortex sound. For both the airfoil and flat plate the peaks appear to be more strongly dependent upon the airspeed than on the oscillation frequency. Therefore reduced frequency does not appear to be a significant parameter in the generation of wake sound intensity

    One-pass adaptive universal vector quantization

    Get PDF
    The authors introduce a one-pass adaptive universal quantization technique for real, bounded alphabet, stationary sources. The algorithm is set on line without any prior knowledge of the statistics of the sources which it might encounter and asymptotically achieves ideal performance on all sources that it sees. The system consists of an encoder and a decoder. At increasing intervals, the encoder refines its codebook using knowledge about incoming data symbols. This codebook is then described to the decoder in the form of updates on the previous codebook. The accuracy to which the codebook is described increases as the number of symbols seen, and thus the accuracy to which the codebook is known, grows

    Peri-abelian categories and the universal central extension condition

    Full text link
    We study the relation between Bourn's notion of peri-abelian category and conditions involving the coincidence of the Smith, Huq and Higgins commutators. In particular we show that a semi-abelian category is peri-abelian if and only if for each normal subobject KXK\leq X, the Higgins commutator of KK with itself coincides with the normalisation of the Smith commutator of the denormalisation of KK with itself. We show that if a category is peri-abelian, then the condition (UCE), which was introduced and studied by Casas and the second author, holds for that category. In addition we show, using amongst other things a result by Cigoli, that all categories of interest in the sense of Orzech are peri-abelian and therefore satisfy the condition (UCE).Comment: 14 pages, final version accepted for publicatio

    Variable-rate source coding theorems for stationary nonergodic sources

    Get PDF
    For a stationary ergodic source, the source coding theorem and its converse imply that the optimal performance theoretically achievable by a fixed-rate or variable-rate block quantizer is equal to the distortion-rate function, which is defined as the infimum of an expected distortion subject to a mutual information constraint. For a stationary nonergodic source, however, the. Distortion-rate function cannot in general be achieved arbitrarily closely by a fixed-rate block code. We show, though, that for any stationary nonergodic source with a Polish alphabet, the distortion-rate function can be achieved arbitrarily closely by a variable-rate block code. We also show that the distortion-rate function of a stationary nonergodic source has a decomposition as the average of the distortion-rate functions of the source's stationary ergodic components, where the average is taken over points on the component distortion-rate functions having the same slope. These results extend previously known results for finite alphabets

    Rates of convergence in adaptive universal vector quantization

    Get PDF
    We consider the problem of adaptive universal quantization. By adaptive quantization we mean quantization for which the delay associated with encoding the jth sample in a sequence of length n is bounded for all n>j. We demonstrate the existence of an adaptive universal quantization algorithm for which any weighted sum of the rate and the expected mean square error converges almost surely and in expectation as O(√(log log n/log n)) to the corresponding weighted sum of the rate and the distortion-rate function at that rate
    corecore