42,704 research outputs found
Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations
High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends
Virtual EQ – the talent differentiator in 2020?
In an increasingly competitive, globalised world, knowledge-intensive industries/ services are seen as engines for success. Key to this marketplace is a growing army of ‘talent’ i.e. skilled and dedicated knowledge workers. These knowledge workers engage in non-routine problem solving through combining convergent, divergent and creative thinking across organizational and company boundaries - a process often facilitated though the internet and social media, consequently forming networks of expertise. For knowledge workers, sharing their learning with others through communities of practice embedded in new information media becomes an important element of their personal identity and the creation of their individual brand or e-social reputation. Part of the new knowledge/skills needed for this process becomes not only emotional intelligence (being attuned to the emotional needs of others) but being able to do this within and through new media, thus the emergence of virtual emotional intelligence (EQ). Our views of current research found that HRD practitioners in 2020 might need to consider Virtual EQ as part of their talent portfolio. However it seems that new technology has created strategies for capturing and managing knowledge that are readily duplicated and that a talent differentiator in 2020 might simply be the ability and willingness to learn
A Svarc-Milnor lemma for monoids acting by isometric embeddings
We continue our programme of extending key techniques from geometric group
theory to semigroup theory, by studying monoids acting by isometric embeddings
on spaces equipped with asymmetric, partially-defined distance functions. The
canonical example of such an action is a cancellative monoid acting by
translation on its Cayley graph. Our main result is an extension of the
Svarc-Milnor Lemma to this setting.Comment: 11 page
Polarization morphology of SiO masers in the circumstellar envelope of the AGB star R Cassiopeiae
Silicon monoxide maser emission has been detected in the circumstellar
envelopes of many evolved stars in various vibrationally-excited rotational
transitions. It is considered a good tracer of the wind dynamics close to the
photosphere of the star. We have investigated the polarization morphology in
the circumstellar envelope of an AGB star, R Cas. We mapped the linear and
circular polarization of SiO masers in the v=1, J=1-0 transition. The linear
polarization is typically a few tens of percent while the circular polarization
is a few percent. The fractional polarization tends to be higher for emission
of lower total intensity. We found that, in some isolated features the
fractional linear polarization appears to exceed 100%. We found the Faraday
rotation is not negligible but is ~15 deg., which could produce small scale
structure in polarized emission whilst total intensity is smoother and partly
resolved out. The polarization angles vary considerably from feature to feature
but there is a tendency to favour the directions parallel or perpendicular to
the radial direction with respect to the star. In some features, the
polarization angle abruptly flips 90 deg. We found that our data are in the
regime where the model of Goldreich et al (1973) can be applied and the
polarization angle flip is caused when the magnetic field is at close to 55
deg. to the line of sight. The polarization angle configuration is consistent
with a radial magnetic field although other configurations are not excluded.Comment: 14 pages, 15 figures. Accepted for publication in MNRA
Functional specialization of the yeast Rho1 GTP exchange factors
Rho GTPases are regulated in complex spatiotemporal patterns that may be dependent, in part at least, on the multiplicity of their GTP exchange factors (GEFs). Here, we examine the extent of and basis for functional specialization of the Rom2 and Tus1 GEFs that activate the yeast Rho1 GTPase, the ortholog of mammalian RhoA. First, we find that these GEFs selectively activate different Rho1-effector branches. Second, the synthetic genetic networks around ROM2 and TUS1 confirm very different global in vivo roles for these GEFs. Third, the GEFs are not functionally interchangeable: Tus1 cannot replace the essential role of Rom2, even when overexpressed. Fourth, we find that Rom2 and Tus1 localize differently: Rom2 to the growing bud surface and to the bud neck at cytokinesis; Tus1 only to the bud neck but in a distinct pattern. Finally, we find that these GEFs are dependent on different protein co-factors: Rom2 function and localization is largely dependent on Ack1, a SEL1 domain containing protein; Tus1 function and localization is largely dependent on the Tus1-interacting protein Ypl066w (which we name Rgl1). We have revealed a surprising level of diversity among the Rho1 GEFs that contributes another level of complexity to the spatiotemporal control of Rho1
Diversity in the organization of elastin bundles and intramembranous muscles in bat wings
Unlike birds and insects, bats fly with wings composed of thin skin that envelops the bones of the forelimb and spans the area between the limbs, digits, and sometimes the tail. This skin is complex and unusual; it is thinner than typical mammalian skin and contains organized bundles of elastin and embedded skeletal muscles. These elements are likely responsible for controlling the shape of the wing during flight and contributing to the aerodynamic capabilities of bats. We examined the arrangement of two macroscopic architectural elements in bat wings, elastin bundles and wing membrane muscles, to assess the diversity in bat wing skin morphology. We characterized the plagiopatagium and dactylopatagium of 130 species from 17 families of bats using cross‐polarized light imaging. This method revealed structures with distinctive relative birefringence, heterogeneity of birefringence, variation in size, and degree of branching. We used previously published anatomical studies and tissue histology to identify birefringent structures, and we analyzed their architecture across taxa. Elastin bundles, muscles, neurovasculature, and collagenous fibers are present in all species. Elastin bundles are oriented in a predominantly spanwise or proximodistal direction, and there are five characteristic muscle arrays that occur within the plagiopatagium, far more muscle than typically recognized. These results inform recent functional studies of wing membrane architecture, support the functional hypothesis that elastin bundles aid wing folding and unfolding, and further suggest that all bats may use these architectural elements for flight. All species also possess numerous muscles within the wing membrane, but the architecture of muscle arrays within the plagiopatagium varies among families. To facilitate present and future discussion of these muscle arrays, we refine wing membrane muscle nomenclature in a manner that reflects this morphological diversity. The architecture of the constituents of the skin of the wing likely plays a key role in shaping wings during flight
The B_s and D_s decay constants in 3 flavor lattice QCD
Capitalizing on recent advances in lattice QCD, we present a calculation of
the leptonic decay constants f_{B_s} and f_{D_s} that includes effects of one
strange sea quark and two light sea quarks. The discretization errors of
improved staggered fermion actions are small enough to simulate with 3
dynamical flavors on lattices with spacings around 0.1 fm using present
computer resources. By shedding the quenched approximation and the associated
lattice scale ambiguity, lattice QCD greatly increases its predictive power.
NRQCD is used to simulate heavy quarks with masses between 1.5 m_c and m_b. We
arrive at the following results: f_{B_s} = 260 \pm 7 \pm 26 \pm 8 \pm 5 MeV and
f_{D_s} = 290 \pm 20 \pm 29 \pm 29 \pm 6 MeV. The first quoted error is the
statistical uncertainty, and the rest estimate the sizes of higher order terms
neglected in this calculation. All of these uncertainties are systematically
improvable by including another order in the weak coupling expansion, the
nonrelativistic expansion, or the Symanzik improvement program.Comment: 4 page
- …