578 research outputs found

    Observation of electroweak production of two jets and a Z-boson pair

    Get PDF
    Electroweak symmetry breaking explains the origin of the masses of elementary particles through their interactions with the Higgs field. Besides the measurements of the Higgs boson properties, the study of the scattering of massive vector bosons with spin 1 allows the nature of electroweak symmetry breaking to be probed. Among all processes related to vector-boson scattering, the electroweak production of two jets and a Z-boson pair is a rare and important one. Here we report the observation of this process from proton–proton collision data corresponding to an integrated luminosity of 139 fb−1 recorded at a centre-of-mass energy of 13 TeV with the ATLAS detector at the Large Hadron Collider. We consider two different final states originating from the decays of the Z-boson pair: one containing four charged leptons and another containing two charged leptons and two neutrinos. The hypothesis of no electroweak production is rejected with a statistical significance of 5.7σ, and the measured cross-section for electroweak production is consistent with the Standard Model prediction. In addition, we report cross-sections for inclusive production of a Z-boson pair and two jets for the two final states

    Search for Higgs boson pair production in association with a vector boson in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector

    Get PDF
    This paper reports a search for Higgs boson pair (hh) production in association with a vector boson (W or Z) using 139 fb−1 of proton–proton collision data at sqrt(s)= 13 TeV recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically (W→ℓν,Z→ℓℓ,νν with ℓ=e,μ) and the Higgs bosons each decay into a pair of b-quarks. It targets Vhh signals from both non-resonant hh production, present in the Standard Model (SM), and resonant hh production, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonant Vhh production when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonance H, in the mass range 260–1000 GeV, that decays into hh, and the other is the production of a heavier neutral pseudoscalar resonance A that decays into a Z boson and H boson, where the A boson mass is 360–800 GeV and the H boson mass is 260–400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models

    Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in pp collisions at sqrt(s) = 13 TeV with the ATLAS detector

    Get PDF
    A search for light long-lived neutral particles with masses in the O(MeV–GeV) range is presented. The analysis targets the production of long-lived dark photons in the decay of a Higgs boson produced via gluon–gluon fusion or in association with a W boson. Events that contain displaced collimated Standard Model fermions reconstructed in the calorimeter or muon spectrometer are selected in 139 fb−1 of sqrt(s) = 13 TeV pp collision data collected by the ATLAS detector at the LHC. Background estimates for contributions from Standard Model processes and instrumental effects are extracted from data. The observed event yields are consistent with the expected background. Exclusion limits are reported on the production cross-section times branching fraction as a function of the mean proper decay length cτ of the dark photon, or as a function of the dark-photon mass and kinetic mixing parameter that quantifies the coupling between the Standard Model and potential hidden (dark) sectors. A Higgs boson branching fraction above 1% is excluded at 95% CL for a Higgs boson decaying into two dark photons for dark-photon mean proper decay lengths between 10 mm and 250 mm and dark photons with masses between 0.4 GeV and 2 GeV

    Search for dark matter produced in association with a dark Higgs boson decaying into W+W− in the one-lepton final state at sqrt(s) = 13 TeV using 139 fb−1 of pp collisions recorded with the ATLAS detector

    Get PDF
    Several extensions of the Standard Model predict the production of dark matter particles at the LHC. A search for dark matter particles produced in association with a dark Higgs boson decaying into W+W− in the ℓ±νqq¯¯′, final states with ℓ = e, μ is presented. This analysis uses 139 fb−1 of pp collisions recorded by the ATLAS detector at a centre-of-mass energy of 13 TeV. The W± → qq′¯¯¯¯ decays are reconstructed from pairs of calorimeter-measured jets or from track-assisted reclustered jets, a technique aimed at resolving the dense topology from a pair of boosted quarks using jets in the calorimeter and tracking information. The observed data are found to agree with Standard Model predictions. Scenarios with dark Higgs boson masses ranging between 140 and 390 GeV are excluded

    Calibration of the light-flavour jet mistagging efficiency of the b-tagging algorithms with Z+jets events using 139 fb-1 of ATLAS proton–proton collision data at sqrt(s) = 13 TeV

    Get PDF
    The identification of b-jets, referred to as b-tagging, is an important part of many physics analyses in the ATLAS experiment at the Large Hadron Collider and an accurate calibration of its performance is essential for high-quality physics results. This publication describes the calibration of the light-flavour jet mistagging efficiency in a data sample of proton–proton collision events at sqrt(s) = 13 TeV corresponding to an integrated luminosity of 139 fb−1. The calibration is performed in a sample of Z bosons produced in association with jets. Due to the low mistagging efficiency for light-flavour jets, a method which uses modified versions of the b-tagging algorithms referred to as flip taggers is used in this work. A fit to the jet-flavour-sensitive secondary-vertex mass is performed to extract a scale factor from data, to correct the light-flavour jet mistagging efficiency in Monte Carlo simulations, while simultaneously correcting the b-jet efficiency. With this procedure, uncertainties coming from the modeling of jets from heavy-flavour hadrons are considerably lower than in previous calibrations of the mistagging scale factors, where they were dominant. The scale factors obtained in this calibration are consistent with unity within uncertainties

    Search for a new Z' gauge boson in 4mu events with the ATLAS experiment

    Get PDF
    This paper presents a search for a new Z′ vector gauge boson with the ATLAS experiment at the Large Hadron Collider using pp collision data collected at sqrt(s) = 13 TeV, corresponding to an integrated luminosity of 139 fb−1. The new gauge boson Z′ is predicted by Lμ − Lτ models to address observed phenomena that can not be explained by the Standard Model. The search examines the four-muon (4μ) final state, using a deep learning neural network classifier to separate the Z′ signal from the Standard Model background events. The di-muon invariant masses in the 4μ events are used to extract the Z′ resonance signature. No significant excess of events is observed over the predicted background. Upper limits at a 95% confidence level on the Z′ production cross-section times the decay branching fraction of pp → Z′μμ → 4μ are set from 0.31 to 4.3 fb for the Z′ mass ranging from 5 to 81 GeV. The corresponding common coupling strengths, gZ′, of the Z′ boson to the second and third generation leptons above 0.003 – 0.2 have been excluded

    Search for an axion-like particle with forward proton scattering in association with photon pairs at ATLAS

    Get PDF
    A search for forward proton scattering in association with light-by-light scattering mediated by an axion-like particle is presented, using the ATLAS Forward Proton spectrometer to detect scattered protons and the central ATLAS detector to detect pairs of outgoing photons. Proton-proton collision data recorded in 2017 at a centre-of-mass energy of sqrt(s) = 13 TeV were analysed, corresponding to an integrated luminosity of 14.6 fb−1. A total of 441 candidate events were selected. A search was made for a narrow resonance in the diphoton mass distribution, corresponding to an axion-like particle (ALP) with mass in the range 150–1600 GeV. No excess is observed above a smooth background. Upper limits on the production cross section of a narrow resonance are set as a function of the mass, and are interpreted as upper limits on the ALP production coupling constant, assuming 100% decay branching ratio into a photon pair. The inferred upper limit on the coupling constant is in the range 0.04–0.09 TeV−1 at 95% confidence level

    Observation of gauge boson joint-polarisation states in W±Z production from pp collisions at sqrt(s) = 13 TeV with the ATLAS detector

    Get PDF
    Measurements of joint-polarisation states of W and Z gauge bosons in W ± Z production are presented. The data set used corresponds to an integrated luminosity of 139 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The W ± Z candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The simultaneous pair-production of longitudinally polarised vector bosons is measured for the first time with a significance of 7.1 standard deviations. The measured joint helicity fractions integrated over the fiducial region are f00 = 0.067 ± 0.010, f0T = 0.110 ± 0.029, fT0 = 0.179 ± 0.023 and fTT = 0.644 ± 0.032, in agreement with the next-to-leading-order Standard Model predictions. Individual helicity fractions of the W and Z bosons are also measured and found to be consistent with joint helicity fractions within the expected amounts of correlation. Both the joint and individual helicity fractions are also measured separately in W + Z and W − Z events. Inclusive and differential cross sections for several kinematic observables sensitive to polarisation are presented

    Search for pair-produced vector-like top and bottom partners in events with large missing transverse momentum in pp collisions with the ATLAS detector

    Get PDF
    A search for pair-produced vector-like quarks using events with exactly one lepton (e or μ), at least four jets including at least one b-tagged jet, and large missing transverse momentum is presented. Data from proton–proton collisions at a centre-of-mass energy of sqrt(s) = 13 TeV, recorded by the ATLAS detector at the LHC from 2015 to 2018 and corresponding to an integrated luminosity of 139 fb−1, are analysed. Vector-like partners T and B of the top and bottom quarks are considered, as is a vector-like X with charge +5/3, assuming their decay into a W, Z, or Higgs boson and a third-generation quark. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section of T and B quark pairs as a function of their mass are derived for various decay branching ratio scenarios. The strongest lower limits on the masses are 1.59 TeV assuming mass-degenerate vector-like quarks and branching ratios corresponding to the weak-isospin doublet model, and 1.47 TeV (1.46 TeV) for exclusive T→Zt (B/X→Wt) decays. In addition, lower limits on the T and B quark masses are derived for all possible branching ratios

    Model-independent search for the presence of new physics in events including H → γγ with sqrt(s) = 13 TeV pp data recorded by the ATLAS detector at the LHC

    Get PDF
    A model-independent search for new physics leading to final states containing a Higgs boson, with a mass of 125.09 GeV, decaying to a pair of photons is performed with 139 fb−1 of sqrt(s) = 13 TeV pp collision data recorded by the ATLAS detector at the Large Hadron Collider at CERN. This search examines 22 final states categorized by the objects that are produced in association with the Higgs boson. These objects include isolated electrons or muons, hadronically decaying τ-leptons, additional photons, missing transverse momentum, and hadronic jets, as well as jets that are tagged as containing a b-hadron. No significant excesses above Standard Model expectations are observed and limits on the production cross section at 95% confidence level are set. Detector efficiencies are reported for all 22 signal regions, which can be used to convert detector-level cross-section limits reported in this paper to particle-level cross-section constraints
    • …
    corecore