3 research outputs found

    Non-LTE modeling of supernova-fallback disks

    Get PDF
    We present a first detailed spectrum synthesis calculation of a supernova-fallback disk composed of iron. We assume a geometrically thin disk with a radial structure described by the classical alpha-disk model. The disk is represented by concentric rings radiating as plane-parallel slabs. The vertical structure and emission spectrum of each ring is computed in a fully self-consistent manner by solving the structure equations simultaneously with the radiation transfer equations under non-LTE conditions. We describe the properties of a specific disk model and discuss various effects on the emergent UV/optical spectrum. We find that strong iron-line blanketing causes broad absorption features over the whole spectral range. Limb darkening changes the spectral distribution up to a factor of four depending on the inclination angle. Consequently, such differences also occur between a blackbody spectrum and our model. The overall spectral shape is independent of the exact chemical composition as long as iron is the dominant species. A pure iron composition cannot be distinguished from silicon-burning ash. Non-LTE effects are small and restricted to few spectral features.Comment: ApSS, accepted, Proceedings of Isolated Neutron Stars: from the Interior to the Surface, April 24-28, 2006, London, U

    UBVRI Light curves of 44 Type Ia supernovae

    Get PDF
    We present UBVRI photometry of 44 Type la supernovae (SNe la) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SNe la to date, nearly doubling the number of well-observed, nearby SNe la with published multicolor CCD light curves. The large sample of [U-band photometry is a unique addition, with important connections to SNe la observed at high redshift. The decline rate of SN la U-band light curves correlates well with the decline rate in other bands, as does the U - B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ∼40% intrinsic scatter compared to the B band
    corecore