678 research outputs found

    Research study on instrument unit thermal conditioning heat sink concepts First quarterly progress report, 11 Mar. - 31 May 1966

    Get PDF
    Water boiler and water sublimator heat sink concepts, visualization test module, and sublimation mechanis

    Research study on instrument unit thermal conditioning heat sink concepts Annual report

    Get PDF
    Expendable evaporant heat sink design concepts - optimization of wick-type boiler and porous plate sublimator heat sink modules, and thermal conditioning panel desig

    Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast

    Get PDF
    A combined multidimensional chromatography-mass spectrometry approach known as "MudPIT" enables rapid identification of proteins that interact with a tagged bait while bypassing some of the problems associated with analysis of polypeptides excised from SDS-polyacrylamide gels. However, the reproducibility, success rate, and applicability of MudPIT to the rapid characterization of dozens of proteins have not been reported. We show here that MudPIT reproducibly identified bona fide partners for budding yeast Gcn5p. Additionally, we successfully applied MudPIT to rapidly screen through a collection of tagged polypeptides to identify new protein interactions. Twenty-five proteins involved in transcription and progression through mitosis were modified with a new tandem affinity purification (TAP) tag. TAP-MudPIT analysis of 22 yeast strains that expressed these tagged proteins uncovered known or likely interacting partners for 21 of the baits, a figure that compares favorably with traditional approaches. The proteins identified here comprised 102 previously known and 279 potential physical interactions. Even for the intensively studied Swi2p/Snf2p, the catalytic subunit of the Swi/Snf chromatin remodeling complex, our analysis uncovered a new interacting protein, Rtt102p. Reciprocal tagging and TAP-MudPIT analysis of Rtt102p revealed subunits of both the Swi/Snf and RSC complexes, identifying Rtt102p as a common interactor with, and possible integral component of, these chromatin remodeling machines. Our experience indicates it is feasible for an investigator working with a single ion trap instrument in a conventional molecular/cellular biology laboratory to carry out proteomic characterization of a pathway, organelle, or process (i.e. "pathway proteomics") by systematic application of TAP-MudPIT

    The effect of nose geometry on the aerothermodynamic environment of shuttle entry configurations

    Get PDF
    The effect was studied of nose geometry on the transition criteria for the windward boundary layer, on the extent of separation, on the heat transfer perturbation due to the canopy, and on the surface pressure and the heat transfer in the separated region. The data for each of these problems is analyzed. A literature review that concentrates on separation and the leeward flow-field is presented

    The Performance of Alfalfa Synthetics in the First and Advanced Generations

    Get PDF
    During alfalfa breeding investigations conducted at the Nebraska Agricultural Experiment Station, numerous superior clones were selected and tested as clones, and in polycross progeny tests. Information was needed on the performance of synthetic varieties in the first and advanced generations, on the optimum number of clones to include in a synthetic variety, and on parent-progeny relationships. Clones with high general combining ability for forage yield as measured by polycross progeny tests, and in certain instances specific combining ability based on single-cross tests, were intercrossed in various ways to produce synthetic varieties. A group of synthetics varying in number of parents from 2 to 6 clones, having in some instances certain clones as common parents, was tested initially in the first generation of synthesis (referred to as Syn-1 from here on), later in the Syn-1 versus the Syn-2, and in some instances in the Syn-1, Syn-2, and Syn-3, and ultimately in the Syn-1,-2,-3, and -4 generations. The purposes of this bulletin are to report (1) comparative results obtained in yield trials involving the Syn-1,-2,-3, and -4 generations of 5 two-clone and 14 multiple-clone synthetics at Lincoln, Nebraska, and Ithaca, New York, and (2) parent-progeny relationships

    Fluorescence staining of live cyanobacterial cells suggest non-stringent chromosome segregation and absence of a connection between cytoplasmic and thylakoid membranes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of their abundance and importance, little is known about cyanobacterial cell biology and their cell cycle. During each cell cycle, chromosomes must be separated into future daughter cells, i.e. into both cell halves, which in many bacteria is achieved by an active machinery that operates during DNA replication. Many cyanobacteria contain multiple identical copies of the chromosome, but it is unknown how chromosomes are segregated into future daughter cells, and if an active or passive mechanism is operative. In addition to an outer and an inner cell membrane, cyanobacteria contain internal thylakoid membranes that carry the active photosynthetic machinery. It is unclear whether thylakoid membranes are invaginations of the inner cell membrane, or an independent membrane system.</p> <p>Results</p> <p>We have used different fluorescent dyes to study the organization of chromosomes and of cell and thylakoid membranes in live cyanobacterial cells. FM1-43 stained the outer and inner cytoplasmic membranes but did not enter the interior of the cell. In contrast, thylakoid membranes in unicellular <it>Synechocystis </it>cells became visible through a membrane-permeable stain only. Furthermore, continuous supply of the fluorescent dye FM1-43 resulted in the formation of one to four intracellular fluorescent structures in <it>Synechocystis </it>cells, within occurred within 30 to 60 minutes, and may represent membrane vesicles. Using fluorescent DNA stains, we found that <it>Synechocystis </it>genomic DNA is compacted in the cell centre that is devoid of thylakoid membranes. Nucleoids segregated very late in the cell cycle, just before complete closing of the division septum. In striking contrast to <it>Bacillus subtilis</it>, which possesses an active chromosome segregation machinery, fluorescence intensity of stained nucleoids differed considerably between the two <it>Synechocystis </it>daughter cells soon after cell division.</p> <p>Conclusion</p> <p>Our experiments strongly support the idea that the cytoplasmic and thylakoid membranes are not directly connected, but separate entities, in unicellular cyanobacteria. Our findings suggest that a transport system may exist between the cytoplasmic membrane and thylakoids, which could mediate the extension of thylakoid membranes and possibly also protein transport from the cytoplasmic membrane to thylakoid membranes. The cell cycle studies in <it>Synechocystis </it>sp. PCC 6803 show that the multiple chromosome copies per cell segregate very late in the cell cycle and in a much less stringent manner than in <it>B. subtilis </it>cells, indicating that chromosomes may become segregated randomly and in a passive fashion, possibly through constriction of the division septum.</p

    A nuclear localization signal targets tail-anchored membrane proteins to the inner nuclear envelope in plants

    Get PDF
    Protein targeting to the inner nuclear membrane (INM) is one of the least understood protein targeting pathways. INM proteins are important for chromatin organization, nuclear morphology and movement, and meiosis, and have been implicated in human diseases. In opisthokonts, one mechanism for INM targeting is transport factor-mediated trafficking, in which nuclear localization signals (NLSs) function in nuclear import of transmembrane proteins. To explore whether this pathway exists in plants, we fused the SV40 NLS to a plant ER tail-anchored protein and showed that the GFP-tagged fusion protein was significantly enriched at the nuclear envelope (NE) of leaf epidermal cells. Airyscan subdiffraction limited confocal microscopy showed that this protein displays a localization consistent with an INM protein. Nine different monopartite and bipartite NLSs from plants and opisthokonts, fused to a chimeric tail-anchored membrane protein, were all sufficient for NE enrichment, and both monopartite and bipartite NLSs were sufficient for trafficking to the INM. Tolerance for different linker lengths and protein conformations suggests that INM trafficking rules might differ from those in opisthokonts. The INM proteins developed here can be used to target new functionalities to the plant nuclear periphery

    Bacillus subtilis RarA Acts as a Positive RecA Accessory Protein

    Get PDF
    Ubiquitous RarA AAA+ ATPases play crucial roles in the cellular response to blocked replication forks in pro- and eukaryotes. Here, we provide evidence that RarA regulates the activity of the central player in homologous recombination (HR), RecA, in response to DNA damage. During unperturbed growth, absence of RarA reduced the viability of recA, recO and recF15 cells, and during repair of H2O2- or MMS-induced DNA damage, rarA was epistatic to recA, recO and recF. Conversely, the inactivation of rarA partially suppressed the HR defect of mutants lacking end-resection (addAB, recJ, recQ, recS) or branch migration (ruvAB, recG, radA) activity. RarA contributes to RecA thread formation, that are thought to be the active forms of RecA during homology search. The absence of RarA reduced RecA accumulation, and the formation of visible RecA threads in vivo upon DNA damage. When rarA was combined with mutations in genuine RecA accessory genes, RecA accumulation was further reduced in rarA recU and rarA recX double mutant cells, and was blocked in rarA recF15 cells. These results suggest that RarA contributes to the assembly of RecA nucleoprotein filaments onto single-stranded DNA (ssDNA), in concert with RecF, and possibly antagonizes RecA filament disassembly by RecX or RecU.Peer reviewe

    Environmental Exposure, Obesity, and Parkinson’s Disease: Lessons from Fat and Old Worms

    Get PDF
    BACKGROUND: A common link has been exposed, namely, that metal exposure plays a role in obesity and in Parkinson's disease (PD). This link may help to elucidate mechanisms of neurotoxicity. OBJECTIVE: We reviewed the utility of the nematode, Caenorhabditis elegans, as a model organism to study neurodegeneration in obesity and Parkinson's disease (PD), with an emphasis on the neurotransmitter, dopamine (DA). DATA SOURCES: A PubMed literature search was performed using the terms "obesity" and any of the following: "C. elegans," "central nervous system," "neurodegeneration," "heavy metals," "dopamine" or "Parkinson's disease." We reviewed the identified studies, including others cited therein, to summarize the current evidence of neurodegeneration in obesity and PD, with an emphasis on studies carried out in C. elegans and environmental toxins in the etiology of both diseases. DATA EXTRACTION AND DATA SYNTHESIS: Heavy metals and DA have both been linked to diet-induced obesity, which has led to the notion that the mechanism of environmentally induced neurodegeneration in PD may also apply to obesity. C. elegans has been instrumental in expanding our mechanism-based knowledge of PD, and this species is emerging as a good model of obesity. With well-established toxicity and neurogenetic assays, it is now feasible to explore the putative link between metal- and chemical-induced neurodegeneration. CONCLUSIONS: One side effect of an aging population is an increase in the prevalence of obesity, metabolic disorders, and neurodegenerative orders, diseases that are likely to co-occur. Environmental toxins, especially heavy metals, may prove to be a previously neglected part of the puzzle

    Isolation of Two Strong Poly (U) Binding Proteins from Moderate Halophile Halomonas eurihalina and Their Identification as Cold Shock Proteins

    Get PDF
    Cold shock proteins (Csp) are known to be expressed in response to sudden decrease in temperature. They are thought to be involved in a number of cellular processes viz., RNA chaperone activity, translation, transcription, nucleoid condensation. During our studies on ribosomal protein S1 in moderate halophile Halomonas eurihalina, we observed the presence of two strong poly (U) binding proteins in abundance in cell extracts from cells grown under normal growth conditions. The proteins can be isolated in a single step using Poly (U) cellulose chromatography. The proteins were identified as major cold shock proteins belonging to Csp A family by MALDI-TOF and bioinformatic analysis. Csp 12 kDa was found in both exponential and stationary phases whereas Csp 8 kDa is found only in exponential phase
    corecore