2,381 research outputs found

    Infrared photometry of Young Massive Clusters in the starburst galaxy NGC 4214

    Full text link
    We present the results of an infrared photometric survey performed with NICS@TNG in the nearby starburst galaxy NGC 4214. We derived accurate integrated JK magnitudes of 10 young massive clusters and compared them with the already available Hubble Space Telescope ultraviolet colors. These clusters are located in the combined ultraviolet-infrared colors planes on well defined sequences, whose shapes allow a precise determination of their age. By means of the comparison with suitable stellar evolution models we estimated ages, metallicities, reddening and masses of these clusters. All the analyzed clusters appear to be younger than log(t/yr)<8.4, moderately metal-rich and slightly less massive than present-day Galactic globular clusters. The derived ages for clusters belonging to the secondary HII star forming complex are significantly larger than those previously estimated in the literature. We also discuss the possibility of using the ultraviolet-infrared color-color diagram to select candidate young massive clusters hosting multiple stellar populations.Comment: 12 pages, 9 figures, accepted for publication by MNRA

    The incidence of binaries in Globular Cluster stellar populations

    Get PDF
    Binary fraction and orbital characteristics provide indications on the conditions of star formation, as they shed light on the environment they were born in. Multiple systems are more common in low density environments rather than in higher density ones. In the current debate about the formation of Globular Clusters and their multiple populations, studying the binary incidence in the populations they host offers a crucial piece of information on the environment of their birth and their subsequent dynamical evolution. Through a multi-year observational campaign using FLAMES at VLT, we monitored the radial velocity of 968 Red-Giant Branch stars located around the half-light radii in a sample of 10 Galactic Globular Clusters. We found a total of 21 radial velocity variables identified as {\it bona fide} binary stars, for a binary fraction of 2.2%±\pm0.5%. When separating the sample into first generation and second generation stars, we find a binary fraction of 4.9%±\pm1.3% and 1.2%±\pm0.4% respectively. Through simulations that take into account possible sources of bias in detecting radial velocity variations in the two populations, we show that the difference is significant and only marginally affected by such effects. Such a different binary fraction strongly suggests different conditions in the environment of formation and evolution of first and second generations stars, with the latter being born in a much denser environment. Our result hence strongly supports the idea that the second generation forms in a dense subsystem at the center of the loosely distributed first generation, where (loose) binaries are efficiently destroyed.Comment: A&A, Accepte

    Spectroscopy of Red Giants in the globular cluster Terzan 8: kinematics and evidence for the surrounding Sagittarius stream

    Full text link
    We present the results of a spectroscopic survey of Red Giants in the globular cluster Terzan 8 with the aim of studying its kinematics. We derived accurate radial velocities for 82 stars located in the innermost 7 arcmin from the cluster center identifying 48 bona fide cluster members. The kinematics of the cluster have been compared with a set of dynamical models accounting for the effect of mass segregation and a variable fraction of binaries. The derived velocity dispersion appears to be larger than that predicted for mass-segregated stellar systems without binaries, indicating that either the cluster is dynamically young or it contains a large fraction of binaries (>30%). We detected 7 stars with a radial velocity compatible with the cluster systemic velocity but with chemical patterns which stray from those of both the cluster and the Galactic field. These stars are likely members of the Sagittarius stream surrounding this stellar system.Comment: 10 pages, 8 figures, accepted for publication by MNRA

    Searching for multiple stellar populations in the massive, old open cluster Berkeley 39

    Full text link
    The most massive star clusters include several generations of stars with a different chemical composition (mainly revealed by an Na-O anti-correlation) while low-mass star clusters appear to be chemically homogeneous. We are investigating the chemical composition of several clusters with masses of a few 10^4 Msun to establish the lower mass limit for the multiple stellar population phenomenon. Using FLAMES@VLT spectra we determine abundances of Fe, O, Na, and several other elements (alpha, Fe-peak, and neutron-capture elements) in the old open cluster Berkeley 39. This is a massive open cluster: M~10^4 Msun, approximately at the border between small globular clusters and large open clusters. Our sample size of about 30 stars is one of the largest studied for abundances in any open cluster to date, and will be useful to determine improved cluster parameters, such as age, distance, and reddening when coupled with precise, well-calibrated photometry. We find that Berkeley 39 is slightly metal-poor, =-0.20, in agreement with previous studies of this cluster. More importantly, we do not detect any star-to-star variation in the abundances of Fe, O, and Na within quite stringent upper limits. The r.m.s. scatter is 0.04, 0.10, and 0.05 dex for Fe, O, and Na, respectively. This small spread can be entirely explained by the noise in the spectra and by uncertainties in the atmospheric parameters. We conclude that Berkeley 39 is a single-population cluster.Comment: A&A in press, 10 pages, tables 2 & 3 available only on-lin

    NGC 6535: the lowest mass Milky Way globular cluster with a Na-O anti-correlation? Cluster mass and age in the multiple population context

    Get PDF
    To understand globular clusters (GCs) we need to comprehend how their formation process was able to produce their abundance distribution of light elements. In particular, we seek to figure out which stars imprinted the peculiar chemical signature of GCs. One of the best ways is to study the light-element anti-correlations in a large sample of GCs that are analysed homogeneously. As part of our spectroscopic survey of GCs with FLAMES, we present here the results of our study of about 30 red giant member stars in the low-mass, low-metallicity Milky Way cluster NGC 6535. We measured the metallicity (finding [Fe/H]=-1.95, rms=0.04 dex in our homogeneous scale) and other elements of the cluster and, in particular, we concentrate here on O and Na abundances. These elements define the normal Na-O anti-correlation of classical GCs, making NGC 6535 perhaps the lowest mass cluster with a confirmed presence of multiple populations. We updated the census of Galactic and extragalactic GCs for which a statement on the presence or absence of multiple populations can be made on the basis of high-resolution spectroscopy preferentially, or photometry and low-resolution spectroscopy otherwise; we also discuss the importance of mass and age of the clusters as factors for multiple populations.Comment: In press on A&A. Table 2 available at CD

    Spectroscopic analysis of the two subgiant branches of the globular cluster NGC1851

    Full text link
    NGC1851 possibly shows a spread in [Fe/H], but the relation between this spread and the division in the SGB is unknown. We obtained blue (3950-4600 A) intermediate resolution (R~8,000) spectra for 47 stars on the bright and 30 on the faint SGB of NGC 1851 (b-SGB and f-SGB, respectively). The determination of the atmospheric parameters to extremely high internal accuracy leads to small errors when comparing different stars in the cluster. We found that the b-SGB is slightly more metal-poor than the f-SGB, with [Fe/H]=-1.227+/-0.009 and [Fe/H]=-1.162+/- 0.012, respectively. This implies that the f-SGB is only slightly older by ~0.6 Gyr than the b-SGB if the total CNO abundance is constant. There are more C-normal stars in the b-SGB than in the f-SGB. This is consistent with what is found for HB stars, if b-SGB are the progenitors of red HB stars, and f-SGB those of blue HB ones. The abundances of the n-capture elements Sr and Ba have a bimodal distribution, reflecting the separation between f-SGB (Sr and Ba-rich) and b-SGB stars (Sr and Ba-poor). In both groups, there is a clear correlation between [Sr/Fe] and [Ba/Fe], suggesting that there is a real spread in the abundances of n-capture elements. There is some correlation between C and Ba abundances, while the same correlation for Sr is much more dubious. We identified six C-rich stars, which have a moderate overabundance of Sr and Ba and rather low N abundances. This group of stars might be the progenitors of these on the anomalous RGB in the (v, v-y) diagram. These results are discussed within different scenarios for the formation of NGC1851. It is possible that the two populations originated in different regions of an inhomogeneous parent object. However, the striking similarity with M22 calls for a similar evolution for these two clusters. Deriving reliable CNO abundances for the two sequences would be crucial.Comment: Accepted by Astronomy and Astrophysics; 16 pages, 20 figure

    Na-O Anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra

    Full text link
    We present homogeneous abundances for Fe and some of the elements involved in the proton-capture reactions (O, Na, Mg, Al, and Si) for 202 red giants in 17 Galactic globular clusters (GCs) from the analysis of high resolution UVES spectra obtained with FLAMES@ESO-VLT2. Our programme clusters span almost the whole range in metallicity of GCs and were selected to sample the widest range of global parameters (HB morphology, masses, concentration, etc). Here we focus on the discussion of the Na-O and Mg-Al anticorrelations and related issues. Our study finds clear Na and O star-to-star abundance variations in all GCs. Variations in Al are present in all but a few GCs. Finally, a spread in abundances of Mg and Si are also present in a few clusters. Mg is slightly less overabundant and Si slightly more overabundant in the most Al-rich stars. The correlation between Si and Al abundances is a signature of production of 28Si leaking from the Mg-Al cycle in a few clusters. The cross sections required for the proper reactions to take over in the cycle point to temperatures in excess of about 65 MK for the favoured site of production. We used a dilution model to infer the total range of Al abundances starting from the Al abundances in the UVES spectra, and the Na abundance distributions found from analysis of the much larger set of stars for which GIRAFFE spectra were available. We found that the maximum amount of additional Al produced by first generation polluters contributing to the composition of the second generation stars in each cluster is closely correlated with the same combination of metallicity and cluster luminosity that reproduced the minimum O abundances found from GIRAFFE spectra. We then suggest that the high temperatures required for the Mg-Al cycle are only reached in the most massive and most metal-poor polluters.Comment: 20 pages, 13 figures, fig. 3 degraded. Accepted for publication on Astronomy and Astrophysic

    NGC 6139: a normal massive globular cluster or a first-generation dominated cluster? Clues from the light elements

    Get PDF
    Information on globular clusters (GC) formation mechanisms can be gathered by studying the chemical signature of the multiple populations that compose these stellar systems. In particular, we are investigating the anticorrelations among O, Na, Al, and Mg to explore the influence of cluster mass and environment on GCs in the Milky Way and in extragalactic systems. We present here the results obtained on NGC 6139 which, on the basis of its horizontal branch morphology, had been proposed to be dominated by first-generation stars. In our extensive study based on high resolution spectroscopy, the first for this cluster, we found a metallicity of [Fe/H]= -1.579 +/- 0.015 +/- 0.058 (rms=0.040 dex, 45 bona fide member stars) on the UVES scale defined by our group. The stars in NGC 6139 show a chemical pattern normal for GCs, with a rather extended Na-O (and Mg-Al) anticorrelation. NGC 6139 behaves like expected from its mass and contains a large fraction (about two thirds) of second-generation stars.Comment: Accepted for publication on A&

    Na-O anticorrelation and HB. IX. Kinematics of the program clusters. A link between systemic rotation and HB morphology?

    Get PDF
    We use accurate radial velocities for 1981 member stars in 20 Galactic globular clusters, collected within our large survey aimed at the analysis of the Na-O anti-correlation, to study the internal kinematics of the clusters. We performed the first systematic exploration of the possible connections between cluster kinematics and the multiple populations phenomenon in GCs. We did not find any significant correlation between Na abundance and either velocity dispersion or systemic rotation. We searched for systemic rotation in the eight clusters of our sample that lack such analysis from previous works in the literature (NGC2808, NGC5904, NGC6171, NGC6254, NGC6397, NGC6388, NGC6441, and NGC6838). These clusters are found to span a large range of rotational amplitudes, from ~0.0 km/s (NGC6397) to ~13.0 km/s (NGC6441). We found a significant correlation between the ratio of rotational velocity to central velocity dispersion (V_{rot}/sigma_0) and the Horizontal Branch Morphology parameter (B-R)/(B+R+V). V_{rot}/sigma_0 is found to correlate also with metallicity, possibly hinting to a significant role of dissipation in the process of formation of globular clusters. V_{rot} is found to correlate well with (B-R)/(B+R+V), M_V, sigma_0 and [Fe/H]. All these correlations strongly suggest that systemic rotation may be intimately linked with the processes that led to the formation of globular clusters and the stellar populations they host.Comment: Accepted for publication on Astronomy & Astrophysics. Pdflatex, 16 pages, 16 pdf figures. The position angles of the rotation axes have been corrected, since the values reported in the previous version were erroneous. The results of the analysis are unchanged. The manuscript has also been processed by a language edito

    The Na-O anticorrelation in horizontal branch stars. III. 47 Tuc and M 5

    Full text link
    To check the impact of the multiple population scenario for globular clusters on their HB, we present an analysis of the composition of 110 red HB (RHB) stars in 47 Tucanae and of 61 blue HB (BHB) and 30 RHB stars in M5. In 47 Tuc we found tight relations between the colours of the stars and their abundances of p-capture elements. This strongly supports the idea that the He content - which is expected to be closely correlated with the abundances of p-capture elements - is the third parameter (after overall metallicity and age) that determines the colour of HB stars. However, the range in He abundance must be small (Delta Y<0.03) in 47 Tuc to reproduce our observations; this agrees with previous analyses. There is possibly a correlation between the abundances of p- and n-capture elements in 47 Tuc. If confirmed, this might suggest that AGB stars of moderate mass contributed to the gas from which second-generation stars formed. Considering the selection effects in our sample (which does not include stars warmer than 11000 K and RR Lyrae variables) is important to understand our results for M5. In this case, we find that, as expected, RHB stars are Na-poor and O-rich, and likely belong to the primordial population. There is a clear correlation of the [Na/O] ratio and N abundance with colour along the BHB. A derivation of the He abundance for these stars yields a low value of Y=0.22\pm 0.03. This is expected because HB stars of a putative He-rich population in this cluster should be warmer than 11000 K, and would accordingly not have been sampled by our analysis. However, we need some additional source of scatter in the total mass loss of stars climbing up the RGB to reproduce our results for M5. Finally, we found a C-star on the HB of 47 Tuc and a Ba-rich, fast-rotating, likely binary star on the HB of M5. These stars are among the brightest and coolest HB stars.Comment: Accepted on Astronomy and Astrophysics. 16 pages, 19 figure
    • …
    corecore