4 research outputs found

    Synergistic Effect of Cloves (Syzygium aromaticum), Thyme (Thymus vulgaris) and Lemon (Citrus limon) Blended Essential Oils Optimized by Mixture Design for Improving the Antioxidant Activity

    Get PDF
    Background: Combining various essential oils (EOs) for developing pharmaceutical formulations has been the focus of attention in recent years. Objectives: This study aimed to determine the antioxidant effect of the combination of three Eos obtained from clove (Syzygium aromaticum L.), lemon peel (Citrus limon L.), and thyme (Thymus vulgaris L.) by using mixture design. Methods: The EOs of lemon peel (EOL), clove (EOC), and thyme (EOT) as well as their combination were analyzed using a gas chromatograph with flame ionization detector (GC/FID). The antioxidant activities of the EOs from EOL, EOC, and EOT as well as their combination were measured adopting DPPH assay. The construction and statistical analysis of the experiment were designed using the NemrodW (LPRAI, version 2000) software. Results: EOL, EOC, and EOT were found capable of neutralizing DPPH radical. EOC was distinguished by its strongest antiradical activity with IC50=15.02±0.02 µg/mL. EOT had an IC50=29.20±0.12 µg/mL while EOL had 188.69±0.95 µg/mL. The positive standard BHT was detected to be IC50=24±0.02 µg/ mL. The optimal, combinative mixture of essential oils may have been determined based on these isoresponse curves which allowed fixing the ideal combinations of ingredient in terms of quantity to obtain an EO mixture possessing appreciable and optimal antioxidant characteristics. The predicted antioxidant properties determined by the mixing plan model were retained and the experiments were carried out respecting the contents of proposed ingredients of 25.7% EOT, 32.3% EOL, and 41.9% EOC equivalent to 15.42 mg, 19.38 mg and 25.14 mg, respectively. This resulted in arriving at an essential oil mixture with an experimental IC50=11.023±0.145 µg/mL which was similar to those of the predicted antioxidant properties with an order of 10.907±0.212 µg/mL and a non-significant difference of P<0.05, based on which the validity of the proposed mixing plan model was determined. The combined EO was also found to be rich in eugenol (32.35±1.13%), thymol (25.49±0.03%), and limonene (21.30±0.02%). Conclusion: Statistical planning and the development of utility profiles for mixtures of essential oils may have been used to predict the optimal composition as well as to determine their antioxidant profile

    A comparative assessment of antifungal activity of essential oils of five medicinal plants from Tunisia

    Get PDF
    The leaf essential oil yields of clementine, cypress, rosemary, tea, and thyme were 0.22, 0.87, 1.46, 1.20, and 0.72%, respectively, based on the dry weight of the plant material. The leaf essential oils of rosemary, tea, and thyme contained the highest levels of oxygenated monoterpenes (60.14-91.70%). Rosemary and tea leaf essential oils were rich in 1,8-cineole (49.98% and 57.55%, respectively), and they have potent antifungal activity against Alternaria alternata strain (MIC = 5000 μg/ml). Thyme was rich in carvacrol (78.54%) and had a MIC of 6000 μg/ml against A. alternata strain. Clementine leaf essential oil was characterized by the predominance of monoterpene hydrocarbons (88.65%), and it possessed a weak antifungal activity against A. alternata (MIC = 8000 μg/ml). Cypress leaf essential oil was characterized by the predominance of oxygenated sesquiterpenes (60.67%), having an antifungal activity of 8000 μg/ml

    Optimizing the Method of Rosemary Essential Oils Extraction by Using Response Surface Methodology (RSM)-Characterization and Toxicological Assessment

    No full text
    Rosemary (Rosmarinus officinalis L.) is a plant with needle-shaped leaves. It is mainly found in Mediterranean regions (Algeria, Morocco and Tunisia). Rosemary essential oil (EO) has several therapeutic virtues that were widely studied. However, the use of this EO is restricted due to its sensitivity to oxidation. Nanoencapsulation based on EO and polymers has been developed as one of the promising techniques to overcome this limitation. In this study, the emphasis was on optimizing the extraction and formulation of a food additive based on rosemary EO. In fact, the results showed that rosemary EO extraction depended on the parameters of the extraction process, and the optimum heating temperature and extraction time were determined using an experimental design methodology. The parameters for extraction were chosen as follows: heating temperature of 250 &deg;C and a hydrodistillation time of 180 min. This optimization revealed that the maximum oil yield can be obtained. Rosemary EO was characterized by a dominance of 1,8-cineole, camphor, &alpha;-pinene, borneol and camphene as well as by high antioxidant and antibacterial capacities with low acute toxicity. The obtained formulation of a stable rosemary EO powder can be used as a food additive in several industrial applications
    corecore