287 research outputs found

    Love at First Sight? Jane Austen and the Transformative Male Gaze

    Get PDF
    In this thesis, I claim that the gaze is central to the courtship process in Austen’s novels. I also propose that an analysis of the gaze is crucial to understanding the gendered power dynamics that are central to these relationships. We tend to think of male gazers as having all the power, but one of Austen’s subversive arguments is that women can also be subjects of the gaze and transform through it. However, limits exist to their power. As I will argue, while men are able to simply project their transformative gaze, women must first use their gaze to perceive their societal position before successfully having a transformative effect

    Analysis and Computational Dissection of Molecular Signature Multiplicity

    Get PDF
    Molecular signatures are computational or mathematical models created to diagnose disease and other phenotypes and to predict clinical outcomes and response to treatment. It is widely recognized that molecular signatures constitute one of the most important translational and basic science developments enabled by recent high-throughput molecular assays. A perplexing phenomenon that characterizes high-throughput data analysis is the ubiquitous multiplicity of molecular signatures. Multiplicity is a special form of data analysis instability in which different analysis methods used on the same data, or different samples from the same population lead to different but apparently maximally predictive signatures. This phenomenon has far-reaching implications for biological discovery and development of next generation patient diagnostics and personalized treatments. Currently the causes and interpretation of signature multiplicity are unknown, and several, often contradictory, conjectures have been made to explain it. We present a formal characterization of signature multiplicity and a new efficient algorithm that offers theoretical guarantees for extracting the set of maximally predictive and non-redundant signatures independent of distribution. The new algorithm identifies exactly the set of optimal signatures in controlled experiments and yields signatures with significantly better predictivity and reproducibility than previous algorithms in human microarray gene expression datasets. Our results shed light on the causes of signature multiplicity, provide computational tools for studying it empirically and introduce a framework for in silico bioequivalence of this important new class of diagnostic and personalized medicine modalities

    Post traumatic brain perfusion SPECT analysis using reconstructed ROI maps of radioactive microsphere derived cerebral blood flow and statistical parametric mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets.</p> <p>Methods</p> <p>The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM).</p> <p>Results</p> <p>A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM.</p> <p>Conclusion</p> <p>The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.</p

    Synthetic biology: Understanding biological design from synthetic circuits

    Get PDF
    An important aim of synthetic biology is to uncover the design principles of natural biological systems through the rational design of gene and protein circuits. Here, we highlight how the process of engineering biological systems — from synthetic promoters to the control of cell–cell interactions — has contributed to our understanding of how endogenous systems are put together and function. Synthetic biological devices allow us to grasp intuitively the ranges of behaviour generated by simple biological circuits, such as linear cascades and interlocking feedback loops, as well as to exert control over natural processes, such as gene expression and population dynamics

    EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting

    Full text link
    This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussions successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells

    Thermodynamics and Kinetics of Adaptive Binding in the Malachite Green RNA Aptamer

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biochemistry, copyright © American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/bi400549sAdaptive binding, the ability of molecules to fold themselves around the structure of a ligand and thereby incorporating it into their three-dimensional fold, is a key feature of most RNA aptamers. The malachite green aptamer (MGA) has been shown to bind several closely related triphenyl dyes with planar and nonplanar structures in this manner. Competitive binding studies using isothermal titration calorimetry and stopped flow kinetics have been conducted with the aim of understanding the adaptive nature of RNA–ligand interaction. The results of these studies reveal that binding of one ligand can reduce the ability of the aptamer pocket to adapt to another ligand, even if this second ligand has a significantly higher affinity to the free aptamer. A similar effect is observed in the presence of Mg2+ ions which stabilize the binding pocket in a more ligand bound-like conformation.National Science and Engineering Research Council (NSERC) [326911-2009]Canada Foundation for Innovation (CFI
    • …
    corecore