6,535 research outputs found
Simple solutions of relativistic hydrodynamics for longitudinally expanding systems
Simple, self-similar, analytic solutions of 1+1 dimensional relativistic
hydrodynamics are presented, generalizing Bjorken's solution to inhomogeneous
rapidity distribution.Comment: 12 pages, elsart.cls, 2 eps figure
The Algebraic Method
Combining the effect of an intermediate renormalization prescription (zero
momentum subtraction) and the background field method (BFM), we show that the
algebraic renormalization procedure needed for the computation of radiative
corrections within non-invariant regularization schemes is drastically
simplified. The present technique is suitable for gauge models and, here, is
applied to the Standard Model. The use of the BFM allows a powerful
organization of the counterterms and avoids complicated Slavnov-Taylor
identities. Furthermore, the Becchi-Rouet-Stora-Tyutin (BRST) variation of
background fields plays a special role in disentangling Ward-Takahashi
identities (WTI) and Slavnov-Taylor identities (STI). Finally, the strategy to
be applied to physical processes is exemplified for the process .Comment: Latex, 38 page
NeXSPheRIO results on elliptic flow at RHIC and connection with thermalization
Elliptic flow at RHIC is computed event-by-event with NeXSPheRIO. Reasonable
agreement with experimental results on is obtained. Various effects
are studied as well: reconstruction of impact parameter direction, freeze out
temperature, equation of state (with or without crossover), emission mecanism.Comment: Contribution to the Proceedings of the Quark-Gluon Plasma
Thermalization workshop. Content slightly increase
Super Background Field Method for N=2 SYM
The implementation of the Background Field Method (BFM) for quantum field
theories is analysed within the Batalin-Vilkovisky (BV) formalism. We provide a
systematic way of constructing general splittings of the fields into classical
and quantum parts, such that the background transformations of the quantum
fields are linear in the quantum variables. This leads to linear Ward-Takahashi
identities for the background invariance and to great simplifications in
multiloop computations. In addition, the gauge fixing is obtained by means of
(anti)canonical transformations generated by the gauge-fixing fermion. Within
this framework we derive the BFM for the N=2 Super-Yang-Mills theory in the
Wess-Zumino gauge viewed as the twisted version of Donaldson-Witten topological
gauge theory. We obtain the background transformations for the full BRST
differential of N=2 Super-Yang-Mills (including gauge transformations, SUSY
transformations and translations). The BFM permits all observables of the
supersymmetric theory to be identified easily by computing the equivariant
cohomology of the topological theory. These results should be regarded as a
step towards the construction of a super BFM for the Minimal Supersymmetric
Standard Model.Comment: 34 pages, Latex, JHEP3.cl
Primordial star formation: relative impact of H2 three-body rates and initial conditions
Population III stars are the first stars in the Universe to form at z=20-30
out of a pure hydrogen and helium gas in minihalos of 10^5-10^6 M .
Cooling and fragmentation is thus regulated via molecular hydrogen. At
densities above 10^8 cm, the three-body H2 formation rates are
particularly important for making the gas fully molecular. These rates were
considered to be uncertain by at least a few orders of magnitude. We explore
the impact of new accurate three-body H2 formation rates derived by Forrey
(2013) for three different minihalos, and compare to the results obtained with
three-body rates employed in previous studies. The calculations are performed
with the cosmological hydrodynamics code ENZO (release 2.2) coupled with the
chemistry package KROME (including a network for primordial chemistry), which
was previously shown to be accurate in high resolution simulations. While the
new rates can shift the point where the gas becomes fully molecular, leading to
a different thermal evolution, there is no trivial trend in how this occurs.
While one might naively expect the results to be inbetween the calculations
based on Palla et al. (1983) and Abel et al. (2002), the behavior can be close
to the former or the latter depending on the dark matter halo that is explored.
We conclude that employing the correct three-body rates is about as equally
important as the use of appropriate initial conditions, and that the resulting
thermal evolution needs to be calculated for every halo individually.Comment: 10 pages, 9 figures, A&A, 561, A13 (2014
The formation of the primitive star SDSS J102915+172927: effect of the dust mass and the grain-size distribution
Understanding the formation of the extremely metal poor star
SDSS-J102915+172927 is of fundamental importance to improve our knowledge on
the transition between the first and second generation of stars in the
Universe. In this paper, we perform three-dimensional cosmological
hydrodynamical simulations of dust-enriched halos during the early stages of
the collapse process including a detailed treatment of the dust physics. We
employ the astrochemistry package \krome coupled with the hydrodynamical code
\textsc{enzo} assuming grain size distributions produced by the explosion of
core-collapse supernovae of 20 and 35 M primordial stars which are
suitable to reproduce the chemical pattern of the SDSS-J102915+172927 star. We
find that the dust mass yield produced from Population III supernovae
explosions is the most important factor which drives the thermal evolution and
the dynamical properties of the halos. Hence, for the specific distributions
relevant in this context, the composition, the dust optical properties, and the
size-range have only minor effects on the results due to similar cooling
functions. We also show that the critical dust mass to enable fragmentation
provided by semi-analytical models should be revised, as we obtain values one
order of magnitude larger. This determines the transition from disk
fragmentation to a more filamentary fragmentation mode, and suggests that
likely more than one single supernova event or efficient dust growth should be
invoked to get such a high dust content.Comment: Accepted on Ap
- âŠ