446 research outputs found

    Crossing the ballistic-ohmic transition via high energy electron irradiation

    Get PDF
    P.H.M. and M.D.B. received PhD studentship support from the UK Engineering and Physical Science Research Council via Grant No. EP/L015110/1. C.P. and P.J.W.M. are supported by the European Research Council under the European Union's Horizon 2020 research and innovation programme (Microstructured Topological Materials Grant No. 715730). E. Z. acknowledges support from the International Max Planck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM). Irradiation experiments performed on the SIRIUS platform were supported by the French National Network of Accelerators for Irradiation and Analysis of Molecules and Materials (EMIR&A) under Project No. EMIR 2019 18-7099.The delafossite metal PtCoO2 is among the highest-purity materials known, with low-temperature mean free path up to 5 μm in the best as-grown single crystals. It exhibits a strongly faceted, nearly hexagonal Fermi surface. This property has profound consequences for nonlocal transport within this material, such as in the classic ballistic-regime measurement of bend resistance in mesoscopic squares. Here, we report the results of experiments in which high-energy electron irradiation was used to introduce pointlike disorder into such squares, reducing the mean free path and therefore the strength of the ballistic-regime transport phenomena. We demonstrate that high-energy electron irradiation is a well-controlled technique to cross from nonlocal to local transport behavior and therefore determine the nature and extent of unconventional transport regimes. Using this technique, we confirm the origins of the directional ballistic effects observed in delafossite metals and demonstrate how the strongly faceted Fermi surface both leads to unconventional transport behavior and enhances the length scale over which such effects are important. © 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.Publisher PDFPeer reviewe

    Stacking, correlations and electronic dispersion in the photoexcited state of 1T-TaS<sub>2</sub>

    Get PDF
    Here we perform angle and time-resolved photoelectron spectroscopy on the commensurate Charge Density Wave phase of 1T-TaS2. Data with different probe pulse polarization are employed to map the dispersion of electronic states below or above the chemical potential. The experimental results are compared to Density-Functional Theory calculations with a self-consistent evaluation of the coulomb repulsion. Both out-of-plane dimerization and electronic correlations must be included in order to obtain good agreement with the experimental data. Upon Photoexcitation, the fluctuations of CDW order erase the band dispersion near to the chemical potential and halve the charge gap size. This transient phase sets within half a period of the coherent lattice motion and is likely favored by strong electronic correlations

    Mass-radius relationships for exoplanets

    Full text link
    For planets other than Earth, interpretation of the composition and structure depends largely on comparing the mass and radius with the composition expected given their distance from the parent star. The composition implies a mass-radius relation which relies heavily on equations of state calculated from electronic structure theory and measured experimentally on Earth. We lay out a method for deriving and testing equations of state, and deduce mass-radius and mass-pressure relations for key materials whose equation of state is reasonably well established, and for differentiated Fe/rock. We find that variations in the equation of state, such as may arise when extrapolating from low pressure data, can have significant effects on predicted mass- radius relations, and on planetary pressure profiles. The relations are compared with the observed masses and radii of planets and exoplanets. Kepler-10b is apparently 'Earth- like,' likely with a proportionately larger core than Earth's, nominally 2/3 of the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an Fe-based core which is likely to be proportionately smaller than Earth's. GJ 1214b lies between the mass-radius curves for H2O and CH4, suggesting an 'icy' composition with a relatively large core or a relatively large proportion of H2O. CoRoT-2b is less dense than the hydrogen relation, which could be explained by an anomalously high degree of heating or by higher than assumed atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation for hydrogen, suggesting the presence of a significant amount of matter of higher atomic number. CoRoT-3b lies close to the hydrogen relation. The pressure at the center of Kepler-10b is 1.5+1.2-1.0 TPa. The central pressure in CoRoT-7b is probably close to 0.8TPa, though may be up to 2TPa.Comment: Added more recent exoplanets. Tidied text and references. Added extra "rock" compositions. Responded to referee comment

    A primordial origin for the atmospheric methane of Saturn's moon Titan

    Full text link
    The origin of Titan's atmospheric methane is a key issue for understanding the origin of the Saturnian satellite system. It has been proposed that serpentinization reactions in Titan's interior could lead to the formation of the observed methane. Meanwhile, alternative scenarios suggest that methane was incorporated in Titan's planetesimals before its formation. Here, we point out that serpentinization reactions in Titan's interior are not able to reproduce the deuterium over hydrogen (D/H) ratio observed at present in methane in its atmosphere, and would require a maximum D/H ratio in Titan's water ice 30% lower than the value likely acquired by the satellite during its formation, based on Cassini observations at Enceladus. Alternatively, production of methane in Titan's interior via radiolytic reactions with water can be envisaged but the associated production rates remain uncertain. On the other hand, a mechanism that easily explains the presence of large amounts of methane trapped in Titan in a way consistent with its measured atmospheric D/H ratio is its direct capture in the satellite's planetesimals at the time of their formation in the solar nebula. In this case, the mass of methane trapped in Titan's interior can be up to 1,300 times the current mass of atmospheric methane.Comment: Accepted for publication in Icaru

    Alzheimers Dement

    Get PDF
    Introduction: The aims of this study are to examine the evolution of clinical dementia diagnosis over 3 decades and to investigate secular trends of dementia. Methods: Four cohorts covering a period from 1988 to 2013 were used: the Personnes Agees Quid and Three-City-Bordeaux studies, and the Cognitive Function and Aging Study (CFAS) I and II. Mini-Mental State Examination scores at clinical diagnosis were evaluated over a 24-year follow-up period in French studies. An algorithmic approach was applied to CFAS I and II to provide dementia prevalence and incidence estimates. Results: A significant increase of the Mini-Mental State Examination score at diagnosis was observed until 2000 and a significant decrease after. We reported a prevalence of 8.8% for CFAS I (1990-1993) compared with a prevalence of 6.5% in CFAS II (2008-2011). The 2-year incidence rate was estimated at 31.2/1000 (95% confidence interval = 28.0-34.8) for CFAS I and 15.0/1000 (95% confidence interval = 13.5-16.7) for CFAS II. Discussion: Applying a stable algorithm to different cohorts across time can provide a robust method for time trends estimation

    DNA Nucleobase Synthesis at Titan Atmosphere Analog by Soft X-rays

    Full text link
    Titan, the largest satellite of Saturn, has an atmosphere chiefly made up of N2 and CH4 and includes traces of many simple organic compounds. This atmosphere also partly consists of haze and aerosol particles which during the last 4.5 gigayears have been processed by electric discharges, ions, and ionizing photons, being slowly deposited over the Titan surface. In this work, we investigate the possible effects produced by soft X-rays (and secondary electrons) on Titan aerosol analogs in an attempt to simulate some prebiotic photochemistry. The experiments have been performed inside a high vacuum chamber coupled to the soft X-ray spectroscopy beamline at the Brazilian Synchrotron Light Source, Campinas, Brazil. In-situ sample analyses were performed by a Fourier transform infrared spectrometer. The infrared spectra have presented several organic molecules, including nitriles and aromatic CN compounds. After the irradiation, the brownish-orange organic residue (tholin) was analyzed ex-situ by gas chromatographic (GC/MS) and nuclear magnetic resonance (1H NMR) techniques, revealing the presence of adenine (C5H5N5), one of the constituents of the DNA molecule. This confirms previous results which showed that the organic chemistry on the Titan surface can be very complex and extremely rich in prebiotic compounds. Molecules like these on the early Earth have found a place to allow life (as we know) to flourish.Comment: To appear in Journal of Physical Chemistry A.; Number of pages: 6; Number of Figures: 5; Number of Tables: 1; Number of references:49; Full paper at http://pubs.acs.org/doi/abs/10.1021/jp902824

    Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks.

    Get PDF
    The enteric nervous system (ENS) is crucial for essential gastrointestinal physiologic functions such as motility, fluid secretion, and blood flow. The gut is colonized by trillions of bacteria that regulate host production of several signaling molecules including serotonin (5-HT) and other hormones and neurotransmitters. Approximately 90% of 5-HT originates from the intestine, and activation of the 5-HT receptor in the ENS has been linked to adult neurogenesis and neuroprotection. Here, we tested the hypothesis that the gut microbiota could induce maturation of the adult ENS through release of 5-HT and activation of 5-HT receptors. Colonization of germ-free mice with a microbiota from conventionally raised mice modified the neuroanatomy of the ENS and increased intestinal transit rates, which was associated with neuronal and mucosal 5-HT production and the proliferation of enteric neuronal progenitors in the adult intestine. Pharmacological modulation of the 5-HT receptor, as well as depletion of endogenous 5-HT, identified a mechanistic link between the gut microbiota and maturation of the adult ENS through the release of 5-HT and activation of the 5-HT receptor. Taken together, these findings show that the microbiota modulates the anatomy of the adult ENS in a 5-HT-dependent fashion with concomitant changes in intestinal transit

    Equation of state and phonon frequency calculations of diamond at high pressures

    Full text link
    The pressure-volume relationship and the zone-center optical phonon frequency of cubic diamond at pressures up to 600 GPa have been calculated based on Density Functional Theory within the Local Density Approximation and the Generalized Gradient Approximation. Three different approaches, viz. a pseudopotential method applied in the basis of plane waves, an all-electron method relying on Augmented Plane Waves plus Local Orbitals, and an intermediate approach implemented in the basis of Projector Augmented Waves have been used. All these methods and approximations yield consistent results for the pressure derivative of the bulk modulus and the volume dependence of the mode Grueneisen parameter of diamond. The results are at variance with recent precise measurements up to 140 GPa. Possible implications for the experimental pressure determination based on the ruby luminescence method are discussed.Comment: 10 pages, 6 figure
    corecore