11 research outputs found

    SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning-specific memory traces

    Get PDF
    Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such "intrinsic plasticity" in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell-specific knockout (KO) of the calcium-activated K+ channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning

    Cerebellar long-term potentiation. cellular mechanisms and role in learning

    No full text
    Activity-dependent long-term plasticity of synaptic transmission, such as in long-term potentiation (LTP) and long-term depression (LTD), provides a cellular correlate of experience-driven learning. While at excitatory synapses in the hippocampus and neocortex LTP is seen as the primary learning mechanism, it has been widely assumed that cerebellar motor learning is mediated by LTD at parallel fiber (PF)-Purkinje cell synapses instead. However, recent work on mouse mutants with deficits in AMPA receptor internalization has demonstrated that motor learning can occur in the absence of LTD, suggesting that LTD is not essential. Another recent study has shifted attention toward LTP at PF synapses, showing that blockade of LTP severely affects motor learning. Here, we review the cellular and molecular events that are involved in LTP induction and discuss whether LTP might indeed play a more significant role in cerebellar learning than previously anticipated. \ua9 2014 Elsevier Inc

    Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD

    No full text
    Ethanol profoundly influences cerebellar circuit function and motor control. It has recently been demonstrated that functional N-methyl-D-aspartate (NMDA) receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in the adult cerebellum. Using whole cell patch-clamp recordings from mouse cerebellar slices, we examined whether ethanol can affect NMDA receptor signaling in mature Purkinje cells. NMDA receptor-mediated currents were isolated by bath application of the \u3b1-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzol[f]quinoxaline (NBQX). The remaining D-2-amino-5-phosphonovaleric acid (D-APV)-sensitive current was reduced by ethanol at concentrations as low as 10 mM. At a concentration of 50 mM ethanol, the blockade of D-APV-sensitive CF-excitatory postsynaptic currents was significantly stronger. Ethanol also altered the waveform of CF-evoked complex spikes by reducing the afterdepolarization. This effect was not seen when NMDA receptors were blocked by D-APV before ethanol wash-in. In contrast to CF synaptic transmission, parallel fiber (PF) synaptic inputs were not affected by ethanol. Finally, ethanol (10 mM) impaired long-term depression (LTD) at PF to Purkinje cell synapses as induced under control conditions by paired PF and CF activity. However, LTD induced by pairing PF stimulation with depolarizing voltage steps (substituting for CF activation) was not blocked by ethanol. These observations suggest that the sensitivity of cerebellar circuit function and plasticity to low concentrations of ethanol may be caused by an ethanol-mediated impairment of NMDA receptor signaling at CF synapses onto cerebellar Purkinje cells. \ua9 2013 the American Physiological Society

    Calcium threshold shift enables frequency-independent control of plasticity by an instructive signal

    No full text
    At glutamatergic synapses, both long-term potentiation (LTP) and long-term depression (LTD) can be induced at the same synaptic activation frequency. Instructive signals determine whether LTP or LTD is induced, by modulating local calcium transients. Synapses maintain the ability to potentiate or depress over a wide frequency range, but it remains unknown how calcium-controlled plasticity operates when frequency variations alone cause differences in calcium amplitudes. We addressed this problem at cerebellar parallel fiber-Purkinje cell synapses, which can undergo LTD or LTP in response to 1-Hz and 100-Hz stimulation. We observed that high-frequency activation elicits larger spine calcium transients than low-frequency stimulation under all stimulus conditions, but, regardless of activation frequency, climbing fiber (CF) coactivation provides an instructive signal that further enhances calcium transients and promotes LTD. At both frequencies, buffering calcium prevents LTD induction and LTP results instead, identifying the enhanced calcium signal amplitude as the critical parameter contributed by the instructive CF signal. These observations show that it is not absolute calcium amplitudes that determine whether LTD or LTP is evoked but, instead, the LTD threshold slides, thus preserving the requirement for relatively larger calcium transients for LTD than for LTP induction at any given stimulus frequency. Cerebellar LTD depends on the activation of calcium/ calmodulin-dependent kinase II (CaMKII). Using genetically modified (TT305/6VA and T305D) mice, we identified \u3b1-CaMKII inhibition upon autophosphorylation at Thr305/306 as a molecular event underlying the threshold shift. This mechanism enables frequencyindependent plasticity control by the instructive CF signal based on relative, not absolute, calcium thresholds

    SK2 channels in cerebellar Purkinje cells contribute to excitability modulation in motor-learning\u2013specific memory traces

    No full text
    Neurons store information by changing synaptic input weights. In addition, they can adjust their membrane excitability to alter spike output. Here, we demonstrate a role of such \u201cintrinsic plasticity\u201d in behavioral learning in a mouse model that allows us to detect specific consequences of absent excitability modulation. Mice with a Purkinje-cell\u2013specific knockout (KO) of the calcium-activated K+ channel SK2 (L7-SK2) show intact vestibulo-ocular reflex (VOR) gain adaptation but impaired eyeblink conditioning (EBC), which relies on the ability to establish associations between stimuli, with the eyelid closure itself depending on a transient suppression of spike firing. In these mice, the intrinsic plasticity of Purkinje cells is prevented without affecting long-term depression or potentiation at their parallel fiber (PF) input. In contrast to the typical spike pattern of EBC-supporting zebrin-negative Purkinje cells, L7-SK2 neurons show reduced background spiking but enhanced excitability. Thus, SK2 plasticity and excitability modulation are essential for specific forms of motor learning

    \u3b11ACT Is Essential for Survival and Early Cerebellar Programming in a Critical Neonatal Window

    No full text
    Postnatal cerebellar development is a precisely regulated process involving well-orchestrated expression of neural genes. Neurological phenotypes associated with CACNA1A gene defects have been increasingly recognized, yet the molecular principles underlying this association remain elusive. By characterizing a dose-dependent CACNA1A gene deficiency mouse model, we discovered that \u3b11ACT, as a transcription factor and secondary protein of CACNA1A mRNA, drives dynamic gene expression networks within cerebellar Purkinje cells and is indispensable for neonatal survival. Perinatal loss of \u3b11ACT leads to motor dysfunction through disruption of neurogenesis and synaptic regulatory networks. However, its elimination in adulthood has minimal effect on the cerebellum. These findings shed light on the critical role of \u3b11ACT in facilitating neuronal development in both mice and humans and support a rationale for gene therapies for calcium-channel-associated cerebellar disorders. Finally, we show that bicistronic expression may be common to the voltage-gated calcium channel (VGCC) gene family and may help explain complex genetic syndromes. Du et al. detail how a novel transcription factor, \u3b11ACT, orchestrates postnatal cerebellar development, a finding highly relevant to loss-of-function CACNA1A genetic developmental disorders. The role of \u3b11ACT wanes in adulthood, paving the way for its safe suppression to treat gain-of-function mutations

    Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism

    No full text
    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning - a form of cerebellum-dependent motor learning - is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres - a model for activity-dependent synaptic pruning - is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism

    Oscillations, Timing, Plasticity, and Learning in the Cerebellum

    No full text
    The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás’s theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito–Marr–Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore