1,387 research outputs found

    Comment on "Dynamic Opinion Model and Invasion Percolation"

    Full text link
    In J. Shao et al., PRL 103, 108701 (2009) the authors claim that a model with majority rule coarsening exhibits in d=2 a percolation transition in the universality class of invasion percolation with trapping. In the present comment we give compelling evidence, including high statistics simulations on much larger lattices, that this is not correct. and that the model is trivially in the ordinary percolation universality class.Comment: 1 pag

    Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad surface-reaction model

    Full text link
    We study the dynamic behavior of the Ziff-Gulari-Barshad (ZGB) irreversible surface-reaction model around its kinetic second-order phase transition, using both epidemic and poisoning-time analyses. We find that the critical point is given by p_1 = 0.3873682 \pm 0.0000015, which is lower than the previous value. We also obtain precise values of the dynamical critical exponents z, \delta, and \eta which provide further numerical evidence that this transition is in the same universality class as directed percolation.Comment: REVTEX, 4 pages, 5 figures, Submitted to Physical Review

    Chaotic synchronizations of spatially extended systems as non-equilibrium phase transitions

    Full text link
    Two replicas of spatially extended chaotic systems synchronize to a common spatio-temporal chaotic state when coupled above a critical strength. As a prototype of each single spatio-temporal chaotic system a lattice of maps interacting via power-law coupling is considered. The synchronization transition is studied as a non-equilibrium phase transition, and its critical properties are analyzed at varying the spatial interaction range as well as the nonlinearity of the dynamical units composing each system. In particular, continuous and discontinuous local maps are considered. In both cases the transitions are of the second order with critical indexes varying with the exponent characterizing the interaction range. For discontinuous maps it is numerically shown that the transition belongs to the {\it anomalous directed percolation} (ADP) family of universality classes, previously identified for L{\'e}vy-flight spreading of epidemic processes. For continuous maps, the critical exponents are different from those characterizing ADP, but apart from the nearest-neighbor case, the identification of the corresponding universality classes remains an open problem. Finally, to test the influence of deterministic correlations for the studied synchronization transitions, the chaotic dynamical evolutions are substituted by suitable stochastic models. In this framework and for the discontinuous case, it is possible to derive an effective Langevin description that corresponds to that proposed for ADP.Comment: 12 pages, 5 figures Comments are welcom

    Studying Attractor Symmetries by Means of Cross Correlation Sums

    Full text link
    We use the cross correlation sum introduced recently by H. Kantz to study symmetry properties of chaotic attractors. In particular, we apply it to a system of six coupled nonlinear oscillators which was shown by Kroon et al. to have attractors with several different symmetries, and compare our results with those obtained by ``detectives" in the sense of Golubitsky et al.Comment: LaTeX file, 16 pages and 16 postscript figures; tarred, gzipped and uuencoded; submitted to 'Nonlinearity

    Damage Spreading in the Ising Model

    Full text link
    We present two new results regarding damage spreading in ferromagnetic Ising models. First, we show that a damage spreading transition can occur in an Ising chain that evolves in contact with a thermal reservoir. Damage heals at low temperature and spreads for high T. The dynamic rules for the system's evolution for which such a transition is observed are as legitimate as the conventional rules (Glauber, Metropolis, heat bath). Our second result is that such transitions are not always in the directed percolation universality class.Comment: 5 pages, RevTeX, revised and extended version, including 3 postscript figure

    Synchronization of Coupled Systems with Spatiotemporal Chaos

    Full text link
    We argue that the synchronization transition of stochastically coupled cellular automata, discovered recently by L.G. Morelli {\it et al.} (Phys. Rev. {\bf 58 E}, R8 (1998)), is generically in the directed percolation universality class. In particular, this holds numerically for the specific example studied by these authors, in contrast to their claim. For real-valued systems with spatiotemporal chaos such as coupled map lattices, we claim that the synchronization transition is generically in the universality class of the Kardar-Parisi-Zhang equation with a nonlinear growth limiting term.Comment: 4 pages, including 3 figures; submitted to Phys. Rev.

    Glassy phases in Random Heteropolymers with correlated sequences

    Full text link
    We develop a new analytic approach for the study of lattice heteropolymers, and apply it to copolymers with correlated Markovian sequences. According to our analysis, heteropolymers present three different dense phases depending upon the temperature, the nature of the monomer interactions, and the sequence correlations: (i) a liquid phase, (ii) a ``soft glass'' phase, and (iii) a ``frozen glass'' phase. The presence of the new intermediate ``soft glass'' phase is predicted for instance in the case of polyampholytes with sequences that favor the alternation of monomers. Our approach is based on the cavity method, a refined Bethe Peierls approximation adapted to frustrated systems. It amounts to a mean field treatment in which the nearest neighbor correlations, which are crucial in the dense phases of heteropolymers, are handled exactly. This approach is powerful and versatile, it can be improved systematically and generalized to other polymeric systems

    Phase transitions and critical behaviour in one-dimensional non-equilibrium kinetic Ising models with branching annihilating random walk of kinks

    Full text link
    One-dimensional non-equilibrium kinetic Ising models evolving under the competing effect of spin flips at zero temperature and nearest-neighbour spin exchanges exhibiting directed percolation-like parity conserving(PC) phase transition on the level of kinks are now further investigated, numerically, from the point of view of the underlying spin system. Critical exponents characterising its statics and dynamics are reported. It is found that the influence of the PC transition on the critical exponents of the spins is strong and the origin of drastic changes as compared to the Glauber-Ising case can be traced back to the hyperscaling law stemming from directed percolation(DP). Effect of an external magnetic field, leading to DP-type critical behaviour on the level of kinks, is also studied, mainly through the generalised mean field approximation.Comment: 15 pages, using RevTeX, 13 Postscript figures included, submitted to J.Phys.A, figures 12 and 13 fixe

    Stretched Polymers in a Poor Solvent

    Full text link
    Stretched polymers with attractive interaction are studied in two and three dimensions. They are described by biased self-avoiding random walks with nearest neighbour attraction. The bias corresponds to opposite forces applied to the first and last monomers. We show that both in d=2d=2 and d=3d=3 a phase transition occurs as this force is increased beyond a critical value, where the polymer changes from a collapsed globule to a stretched configuration. This transition is second order in d=2d=2 and first order in d=3d=3. For d=2d=2 we predict the transition point quantitatively from properties of the unstretched polymer. This is not possible in d=3d=3, but even there we can estimate the transition point precisely, and we can study the scaling at temperatures slightly below the collapse temperature of the unstretched polymer. We find very large finite size corrections which would make very difficult the estimate of the transition point from straightforward simulations.Comment: 10 pages, 16 figure

    Recent advances and open challenges in percolation

    Full text link
    Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap, and correlated percolation
    corecore