156 research outputs found
Fluids Geochemistry of Stromboli
An accurate description of the geochemical system is presented here based on a review of scientific work performed during the past decade. The surface manifestations of the volcanic system of Stromboli have been investigated using several measuring techniques. Studying the chemical composition of the volcanic plume and of fumarolic emissions has provided information on magma degassing processes. The total fluxes of the emitted gases from both the plume and the soil were found to vary with changes in volcanic activity (from normal Strombolian activity to effusive and/or paroxysmal activity). Thermal water results from the interaction between volcanic gases, host rock, seawater and meteoric water and temporal changes observed in the chemical and the isotopic composition of the gases dissolved into thermal waters highlighted the rising of new magma batches.
Combining modelling of gas-water-rock interactions with an understanding of the volcanic system allowed to identify preferential sampling sites and parameters for the geochemical monitoring of volcanic activity at Stromboli Island
Geomorphological and geochemical characterization of the 11 August 2008 mud volcano eruption at S. Barbara village (Sicily, Italy) and its possible relationship with seismic activity
On 11 August 2008 a paroxysmal eruption occurred at Santa Barbara mud volcano (MV), located close to Caltanissetta, one of the most densely populated cities of Sicily (Italy). An associated minor event took place on August 2009. Both the events caused severe damage to civil infrastructures located within a range of about 2 km from the eruptive vent. Geomorphological, geochemical, and seismological investigations were carried out for framing the events in the appropriate geodynamic context. Geomorphological surveys recognized, in the immediate surrounding of the main emission point, two different families of processes and landforms: (i) ground deformations and (ii) changes in morphology and number of the fluid emitting vents. These processes were associated to a wider network of fractures, seemingly generated by the shock wave produced by the gas blast that occurred at the main paroxysm. Geochemical characterization allowed an estimation of the source of the fluids, or at least their last standing, at about 3 km depth. Finally, the close time relationships observed between anomalous increments of seismic activity and the two main paroxysmal events accounted for a possible common trigger for both the phenomena, even with different timing due to the very different initial conditions and characteristics of the two processes, i.e. seismogenesis and gas overloading
Geochemical processes governing the chemistry of groundwater hosted within the Hyblean aquifers
A raingauge network made of six stations was installed in the Hyblean region. Stations were located at different altitudes (from 5 m to 986 m a.s.l.) and along two directions (E-W and SW-NE). Rainwater samples were monthly collected for stable isotope measurements.
Spatial distribution of rainwater isotope composition has confirmed the wet air masses
move from South-East/South-West toward North. Water balance has highlighted that the annual volume of infiltrating waters is in the range of 1-1.5 *105 m3 Km-2.
82 well waters and 12 spring waters located within the Hyblean Plateau (South-Estern Sicily), were also collected from 1999 to 2001 during several surveys for chemical (major,minor and trace elements) analyses. Water chemistry allowed to identify two main aquifers: the first aquifer hosted within sedimentary rocks is characterized by earthalkaline bicarbonate waters, while the second aquifer, located within the volcanic deposits (mainly towards North- North-East) is characterized by groundwaters evolving from earthalkaline bicarbonate water-type towards a Na-HCO3-type.
A slightly anomaly in water temperature (24-28°C) have been identified along the northern margin, while the lower Eh values have been recorded along the M.Lauro-Scicli and the Hyblean Malta Escarpment fault systems. Isotope composition of groundwaters has suggested the occurrence of evaporative processes during soil infiltration having a dD/d18O slope close to 4.5.
Chemical and isotope composition of dissolved gases (d13CTDIC, d13CCH4, 3He/4He) have
revealed, as expected, that deeply-derived gases rise along the main tectonic discontinuities. Chemical and isotope analyses of dissolved carbon have revealed the existence of two sampling sites (NA and FE samples) attesting the interaction between groundwaters and a consistent amount of deep inorganic carbon dioxide.
He isotope ratios (from 0.81Ra to 6.19 Ra) have revealed the occurrence of mixing process,
in different proportions, between crustal and mantle components.
On the base of the obtained results, a clear picture of the groundwaters circulation within
the Hyblean aquifers has been drawn. In framework of projecting of a geochemical network for the continuous monitoring of the local seismic activity the most suitable geochemical parameters and the sites of great interest have been identified
Geomorphological and geochemical characterization of the August 11, 2008 mud volcano eruption at S. Barbara village (Sicily, Italy) and its possible relationship with seismic activity
On August 11, 2008 a paroxysmal eruption occurred at Santa Barbara mud volcano (MV), located close to Caltanissetta, one of the most densely populated cities of Sicily (Italy). An associated minor event took place on August, 2009. Both the events caused severe damages to civil infrastructures located within a range of about 2 km from the eruptive vent. Geomorphological, geochemical and seismological investigations were carried out for framing the events in the appropriate geodynamic context. Geomorphological surveys recognized, in the immediate surrounding of the main emission point, two different families of processes and landforms: ground deformations and changes in morphology and number of the fluid emitting vents. These processes were associated to a wider network of fractures, seemingly generated by the shock wave produced by the gas blast occurred at the main paroxysm. Geochemical characterization allowed to estimate the source of the fluids, or at least their last standing, at about 3 km depth. Finally, the close time relationships observed between anomalous increments of seismic activity and the two main paroxysmal events, accounted for a common possible trigger for both the phenomena, even if with a different timing due to the very different initial conditions and characteristics of the two processes, i.e. seismogenesis and gas overloading
Molecular and isotopic composition of free hydrocarbon gases from Sicily, Italy
Chemical and isotopic data have been used as geochemical tracers for a genetic characterization of hydrocarbon gases from a total of eleven manifestations located in Eastern and Central-Southern Sicily (Italy). The molecular analysis shows that almost all the samples are enriched in methane (up to 93.2% Vol.), with the exception of four gas samples collected around Mt. Etna showing high mantle-derived CO2 content. Methane isotope signatures suggest that these are thermogenic gases or a mixture between thermogenic gases and microbial gases. Although samples from some mud volcanoes in Southern Sicily (Macalube di Aragona) show isotope signatures consistent with a mixing model between thermogenic and microbial, by combining the molecular compositions (C-1/(C-2 + C-3)) and the methane isotope ratios (delta(13)C(1)), such a process seems to be excluded. Therefore, the occurrence of secondary post-genetic processes should be invoked. Two main hypotheses have been considered: the first hypothesis includes that the gas is produced by microbial activity and altered post-genetically by microbial oxidation of methane, while according to the second hypothesis thermogenic gas have modified their molecular ratios due to vertical migration
Anomalous concentrations of arsenic, fluoride and radon in volcanic-sedimentary aquifers from Central Italy: quality indexes for management of the water resource.
659 water samples from springs and wells in the Sabatini and Vicano-Cimino Volcanic Districts (central Italy) were analyzed for arsenic (As), fluoride (F−) and radon (222Rn) concentrations. Waters mostly sourced from a shallow and cold aquifer hosted within volcanic rocks, which represents the main public drinking water supply. Cold waters from perched aquifers within sedimentary formations and thermal waters related to a deep hydrothermal reservoir were also analyzed. The highest concentrations of As and F− were measured in the thermal waters and attributed to their enhanced mobility during water-rock interaction processes at hydrothermal temperatures. Relatively high concentrations of As and F− were also recorded in those springs and wells discharging from the volcanic aquifer, whereas waters hosted in the sedimentary units showed significantly lower contents. About 60% (As) and 25% (F−) of cold waters from the volcanic aquifer exceeded the maximum allowable concentrations for human consumption. Such anomalously high levels of geogenic pollutants were caused by mixing with fluids upwelling through faulted zones from the hydrothermal reservoir. Chemical weathering of volcanic rocks and groundwater flow path were also considered to contribute to the observed concentrations. Cold waters from the volcanic aquifer showed the highest 222Rn concentrations, resulting from the high contents of Rn-generating radionuclides in the volcanic units. Approximately 22% of these waters exceeded the recommended value for human consumption. A specific Quality Index (QI), comprised between 1 (very low) and 4 (very high), was computed for each water on the basis of As, F− and 222Rn concentrations and visualized through a spatial distribution map processed by means of geostatistical techniques. This map and the specific As, F− and 222Rn maps can be regarded as useful tools for water management by local authorities to both improve intervention plans in contaminated sectors and identify new water resources suitable for human consumption.Published525-5376A. Geochimica per l'ambiente e geologia medicaJCR Journa
Mantle-derived carbon in Hercynian granites. Stable isotopes signatures and C/He associations in the thermomineral waters, N-Portugal
Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes
region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this
tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters
(67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral
waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold
mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g)
rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin
for the gas. δ13CCO2 values ranging between −7.2‰ and −5.1‰ are consistent with a two-component
mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios
measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which
are higher than that those expected for a pure crustal origin (≈0.02 Ra), indicating that 10 to 30% of the He
has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a
region without recent volcanic activity indicates that extensive neo-tectonic structures originating during
the Alpine Orogeny are still active (i.e., the Chaves Depression)
Tunable diode laser measurements of hydrothermal/volcanic CO2 and implications for the global CO2 budget
Quantifying the CO2 flux sustained by low-temperature fumarolic fields in hydrothermal/volcanic environments has remained a challenge, to date. Here, we explored the potential of a commercial infrared tunable laser unit for quantifying such fumarolic volcanic/hydrothermal CO2 fluxes. Our field tests were conducted between April 2013 and March 2014 at Nea Kameni (Santorini, Greece), Hekla and KrýsuvÃk (Iceland) and Vulcano (Aeolian Islands, Italy). At these sites, the tunable laser was used to measure the path-integrated CO2 mixing ratios along cross sections of the fumaroles' atmospheric plumes. By using a tomographic post-processing routine, we then obtained, for each manifestation, the contour maps of CO2 mixing ratios in the plumes and, from their integration, the CO2 fluxes. The calculated CO2 fluxes range from low (5.7 ± 0.9 t d−1; KrýsuvÃk) to moderate (524 ± 108 t d−1; La Fossa crater, Vulcano). Overall, we suggest that the cumulative CO2 contribution from weakly degassing volcanoes in the hydrothermal stage of activity may be significant at the global scale
- …