7 research outputs found
Host-Associated Bacteriophage Isolation and Preparation for Viral Metagenomics.
Prokaryotic viruses, or bacteriophages, are viruses that infect bacteria and archaea. These viruses have been known to associate with host systems for decades, yet only recently have their influence on the regulation of host-associated bacteria been appreciated. These studies have been conducted in many host systems, from the base of animal life in the Cnidarian phylum to mammals. These prokaryotic viruses are useful for regulating the number of bacteria in a host ecosystem and for regulating the strains of bacteria useful for the microbiome. These viruses are likely selected by the host to maintain bacterial populations. Viral metagenomics allows researchers to profile the communities of viruses associating with animal hosts, and importantly helps to determine the functional role these viruses play. Further, viral metagenomics show the sphere of viral involvement in gene flow and gene shuffling in an ever-changing host environment. The influence of prokaryotic viruses could, therefore, have a clear impact on host health
Viral ecogenomics across the Porifera
BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.ResultsViromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.ConclusionsOur results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts
Variability and Host Density Independence in Inductions-based Estimates of Environmental Lysogeny
Temperate bacterial viruses (phages) may enter a symbiosis with their host cell, forming a unit called a lysogen. Infection and viral replication are disassociated in lysogens until an induction event such as DNA damage occurs, triggering viral-mediated lysis. The lysogen–lytic viral reproduction switch is central to viral ecology, with diverse ecosystem impacts. It has been argued that lysogeny is favoured in phages at low host densities. This paradigm is based on the fraction of chemically inducible cells (FCIC) lysogeny proxy determined using DNA-damaging mitomycin C inductions. Contrary to the established paradigm, a survey of 39 inductions publications found FCIC to be highly variable and pervasively insensitive to bacterial host density at global, within-environment and within-study levels. Attempts to determine the source(s) of variability highlighted the inherent complications in using the FCIC proxy in mixed communities, including dissociation between rates of lysogeny and FCIC values. Ultimately, FCIC studies do not provide robust measures of lysogeny or consistent evidence of either positive or negative host density dependence to the lytic–lysogenic switch. Other metrics are therefore needed to understand the drivers of the lytic–lysogenic decision in viral communities and to test models of the host density-dependent viral lytic–lysogenic switch