1 research outputs found
Theory of resistor networks: The two-point resistance
The resistance between arbitrary two nodes in a resistor network is obtained
in terms of the eigenvalues and eigenfunctions of the Laplacian matrix
associated with the network. Explicit formulas for two-point resistances are
deduced for regular lattices in one, two, and three dimensions under various
boundary conditions including that of a Moebius strip and a Klein bottle. The
emphasis is on lattices of finite sizes. We also deduce summation and product
identities which can be used to analyze large-size expansions of two-and-higher
dimensional lattices.Comment: 30 pages, 5 figures now included; typos in Example 1 correcte