10 research outputs found

    Origin of Gap Anisotropy in Spin Fluctuation Models of the Fe-pnictides

    Full text link
    We discuss the large gap anisotropy found for the A1g (s-wave) state in RPA spin-fluctuation and functional renormalization group calculations and show how the simple arguments leading to isotropic sign-switched s-wave states in these systems need to be supplemented by a consideration of pair scattering within Fermi surface sheets and between the individual electron sheets as well. In addition, accounting for the orbital makeup of the states on the Fermi surface is found to be crucial.Comment: 6 pages, 7 figure

    d-wave pairing from spin fluctuations in the KxFe{2-y}Se2 superconductors

    Full text link
    Angle-resolved photoemission spectroscopy measurements on the recently discovered superconduc- tors in the KFe2Se2 family with critical temperatures up to - 33K suggest that no Fermi pockets of hole character centered on the {\Gamma} point of the Brillouin zone are present, in contrast to all other known ferropnictide and ferrochalcogenide superconductors. Using a fluctuation exchange approximation and a 5-orbital tight-binding description of the band structure, we calculate the effective pairing interaction. We find that the pairing state in this system is most likely to have d-wave symmetry due to pair scattering between the remaining electron Fermi pockets at wave vector q - ({\pi}, {\pi}), but without any symmetry-imposed nodes for the given Fermi surface. We propose experimental tests of this result, including the form of the resonance spectrum probed by inelastic neutron scattering.Comment: 4 pages, 5 figures, submitted to Rapid Communication

    Neutron Scattering Resonance and the Fe-pnictide Superconducting Gap

    Full text link
    The existence of a neutron scattering resonance at a wavevector q* implies a sign change of the gap between two Fermi surface regions separated by wavevector q* . For the Fe pnictides, a resonance has been observed for a wavevector q* which connects a hole Fermi surface around the Γ\Gamma point with an electron Fermi surface around the X or Y points of the 1 Fe/unit cell Brillouin zone. Here we study the neutron scattering resonance for a five orbital model within an RPA-BCS approximation. Our results show that both sign-switched and extended s-wave gaps are consistent with the present data for q* near (π\pi, 0) and that scattering at other momentum transfers can be useful in distinguishing between gap structures.Comment: 5 pages, 4 figure

    Spin fluctuations and superconductivity in a 3D tight-binding model for BaFe2As2

    Full text link
    Despite the wealth of experimental data on the Fe-pnictide compounds of the KFe2As2-type, K = Ba, Ca, or Sr, the main theoretical work based on multiorbital tight-binding models has been restricted so far to the study of the related 1111 compounds. This can be ascribed to the more three dimensional electronic structure found by ab initio calculations for the 122 materials, making this system less amenable to model development. In addition, the more complicated Brillouin zone (BZ) of the body-centered tetragonal symmetry does not allow a straightforward unfolding of the electronic band structure into an effective 1Fe/unit cell BZ. Here we present an effective 5-orbital tight-binding fit of the full DFT band structure for BaFeAs including the kz dispersions. We compare the 5-orbital spin fluctuation model to one previously studied for LaOFeAs and calculate the RPA enhanced susceptibility. Using the fluctuation exchange approximation to determine the leading pairing instability, we then examine the differences between a strictly two dimensional model calculation over a single kz cut of the BZ and a completely three dimensional approach. We find pairing states quite similar to the 1111 materials, with generic quasi-isotropic pairing on the hole sheets and nodal states on the electron sheets at kz = 0 which however are gapped as the system is hole doped. On the other hand, a substantial kz dependence of the order parameter remains, with most of the pairing strength deriving from processes near kz = pi. These states exhibit a tendency for an enhanced anisotropy on the hole sheets and a reduced anisotropy on the electron sheets near the top of the BZ.Comment: 12 pages, 15 figure

    Lifting of nodes by disorder in extended-ss state superconductors: application to ferropnictides

    Full text link
    We show, using a simple model, how ordinary disorder can gap an extended-ss (A1gA_{1g}) symmetry superconducting state with nodes. The concommitant crossover of thermodynamic properties, particularly the TT-dependence of the superfluid density, from pure power law behavior to an activated one is exhibited. We discuss applications of this scenario to experiments on the ferropnictide superconductors.Comment: 9 page

    Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides

    Get PDF
    Experiments on the iron-pnictide superconductors appear to show some materials where the ground state is fully gapped, and others where low-energy excitations dominate, possibly indicative of gap nodes. Within the framework of a 5-orbital spin fluctuation theory for these systems, we discuss how changes in the doping, the electronic structure or interaction parameters can tune the system from a fully gapped to nodal sign-changing gap with s-wave (A1gA_{1g}) symmetry (s±s^\pm). In particular we focus on the role of the hole pocket at the (π,π)(\pi,\pi) point of the unfolded Brillouin zone identified as crucial to the pairing by Kuroki {\it et al.}, and show that its presence leads to additional nesting of hole and electron pockets which stabilizes the isotropic s±s^\pm state. The pocket's contribution to the pairing can be tuned by doping, surface effects, and by changes in interaction parameters, which we examine. Analytic expressions for orbital pairing vertices calculated within the RPA fluctuation exchange approximation allow us to draw connections between aspects of electronic structure, interaction parameters, and the form of the superconducting gap

    Pairing in the iron arsenides: a functional RG treatment

    Full text link
    We study the phase diagram of a microscopic model for the superconducting iron arsenides by means of a functional renormalization group. Our treatment establishes a connection between a strongly simplified two-patch model by Chubukov et al. and a five-band- analysis by Wang et al.. For a wide parameter range, the dominant pairing instability occurs in the extended s-wave channel. The results clearly show the relevance of pair scattering between electron and hole pockets. We also give arguments that the phase transition between the antiferromagnetic phase for the undoped system and the superconducting phase may be first order

    Near-degeneracy of several pairing channels in multiorbital models for the Fe-pnictides

    Full text link
    Weak-coupling approaches to the pairing problem in the iron pnictide superconductors have predicted a wide variety of superconducting ground states. We argue here that this is due both to the inadequacy of certain approximations to the effective low-energy band structure, and to the natural near-degeneracy of different pairing channels in superconductors with many distinct Fermi surface sheets. In particular, we review attempts to construct two-orbital effective band models, the argument for their fundamental inconsistency with the symmetry of these materials, and the comparison of the dynamical susceptibilities in two- and five-orbital models. We then present results for the magnetic properties, pairing interactions, and pairing instabilities within a five-orbital Random Phase Approximation model. We discuss the robustness of these results for different dopings, interaction strengths, and variations in band structure. Within the parameter space explored, an anisotropic, sign-changing s-wave state and a d_x2-y2 state are nearly degenerate, due to the near nesting of Fermi surface sheets.Comment: 17 pages, 23 figure

    Magnetism and its microscopic origin in iron-based high-temperature superconductors

    Full text link
    High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising since these undoped states display dramatically different antiferromagnetic (AF) spin arrangements and NeËŠ\rm \acute{e}el temperatures. Although there is general consensus that magnetic interactions are important for superconductivity, much is still unknown concerning the microscopic origin of the magnetic states. In this review, progress in this area is summarized, focusing on recent experimental and theoretical results and discussing their microscopic implications. It is concluded that the parent compounds are in a state that is more complex than implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in Nature Physic
    corecore