8 research outputs found

    Adoptive immunotherapy of cancer with polyclonal, 10(8)-fold hyperexpanded, CD4(+ )and CD8(+ )T cells

    Get PDF
    T cell-mediated cancer immunotherapy is dose dependent and optimally requires participation of antigen-specific CD4(+ )and CD8(+ )T cells. Here, we isolated tumor-sensitized T cells and activated them in vitro using conditions that led to greater than 10(8)-fold numerical hyperexpansion of either the CD4(+ )or CD8(+ )subset while retaining their capacity for in vivo therapeutic efficacy. Murine tumor-draining lymph node (TDLN) cells were segregated to purify the CD62L(low )subset, or the CD4(+ )subset thereof. Cells were then propagated through multiple cycles of anti-CD3 activation with IL-2 + IL-7 for the CD8(+ )subset, or IL-7 + IL-23 for the CD4(+ )subset. A broad repertoire of TCR Vβ families was maintained throughout hyperexpansion, which was similar to the starting population. Adoptive transfer of hyper-expanded CD8(+ )T cells eliminated established pulmonary metastases, in an immunologically specific fashion without the requirement for adjunct IL-2. Hyper-expanded CD4(+ )T cells cured established tumors in intracranial or subcutaneous sites that were not susceptible to CD8(+ )T cells alone. Because accessibility and antigen presentation within metastases varies according to anatomic site, maintenance of a broad repertoire of both CD4(+ )and CD8(+ )T effector cells will augment the overall systemic efficacy of adoptive immunotherapy

    Increased Glucose Availability Sensitizes Pancreatic Cancer to Chemotherapy

    Get PDF
    Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose

    Requirement of Innate Immunity in Tumor-Bearing Mice Cured by Adoptive Immunotherapy Using Tumor-Draining Lymph Nodes

    No full text
    Background. The purpose of this study was to determine the cellular effectors of both the adoptively transferred cells and the tumor-bearing host that participate in the antitumor response to adoptive immunotherapy using culture-activated tumor-draining lymph nodes (TDLNs). Methods. TDLNs harvested from mice with 4T1 carcinoma cells were fractionated to derive the L-selectin low subpopulation and activated ex vivo prior to in vitro cytokine release assays and adoptive transfer into BALB/c mice bearing 3-day established subcutaneous tumors. Tumor-bearing recipients were SCID (lacking T, B, and NK cells), Rag2 deficient (lacking T and B cells), and wild-type BALB/c mice. Results. Culture-activated L-selectin low 4T1 TDLN from BALB/c mice secreted significant levels of interferon-gamma in response to 4T1 but not control tumor cells in vitro. CD4 cells within the adoptively transferred effector cell population contributed significantly to the antitumor effect in vivo. Culture-activated L-selectin low TDLNs from BALB/c wild-type mice were able to cure Rag2 deficient but not SCID mice bearing 4T1 subcutaneous tumors, suggesting a requirement of NK cells within the innate immune system of the tumor-bearing host during the antitumor response. Conclusions. These results identify the cellular effectors involved in tumor regression following adoptive transfer and demonstrate the requirement for intact innate immunity within the tumor-bearing host

    Requirement of Innate Immunity in Tumor-Bearing Mice Cured by Adoptive Immunotherapy Using Tumor-Draining Lymph Nodes

    No full text
    Background. The purpose of this study was to determine the cellular effectors of both the adoptively transferred cells and the tumor-bearing host that participate in the antitumor response to adoptive immunotherapy using culture-activated tumor-draining lymph nodes (TDLNs). Methods. TDLNs harvested from mice with 4T1 carcinoma cells were fractionated to derive the L-selectinlow subpopulation and activated ex vivo prior to in vitro cytokine release assays and adoptive transfer into BALB/c mice bearing 3-day established subcutaneous tumors. Tumor-bearing recipients were SCID (lacking T, B, and NK cells), Rag2 deficient (lacking T and B cells), and wild-type BALB/c mice. Results. Culture-activated L-selectinlow 4T1 TDLN from BALB/c mice secreted significant levels of interferon-gamma in response to 4T1 but not control tumor cells in vitro. CD4 cells within the adoptively transferred effector cell population contributed significantly to the antitumor effect in vivo. Culture-activated L-selectinlow TDLNs from BALB/c wild-type mice were able to cure Rag2 deficient but not SCID mice bearing 4T1 subcutaneous tumors, suggesting a requirement of NK cells within the innate immune system of the tumor-bearing host during the antitumor response. Conclusions. These results identify the cellular effectors involved in tumor regression following adoptive transfer and demonstrate the requirement for intact innate immunity within the tumor-bearing host

    Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors

    Get PDF
    Nutrient-deprived conditions in the tumor microenvironment (TME) restrain cancer cell viability due to increased free radicals and reduced energy production. In pancreatic cancer cells a cytosolic metabolic enzyme, wild-type isocitrate dehydrogenase 1 (wtIDH1), enables adaptation to these conditions. Under nutrient starvation, wtIDH1 oxidizes isocitrate to generate α-ketoglutarate (αKG) for anaplerosis and NADPH to support antioxidant defense. In this study, we show that allosteric inhibitors of mutant IDH1 (mIDH1) are potent wtIDH1 inhibitors under conditions present in the TME. We demonstrate that low magnesium levels facilitate allosteric inhibition of wtIDH1, which is lethal to cancer cells when nutrients are limited. Furthermore, the Food & Drug Administration (FDA)-approved mIDH1 inhibitor ivosidenib (AG-120) dramatically inhibited tumor growth in preclinical models of pancreatic cancer, highlighting this approach as a potential therapeutic strategy against wild-type IDH1 cancers
    corecore