86 research outputs found

    Electric-field-temperature phase diagram of the ferroelectric relaxor system (1-x)Bi1/2Na1/2TiO3-xBaTiO3 doped with manganese

    Get PDF
    The electric-field-temperature phase diagram for the lead-free relaxor material (1 - x)(Bi1/2Na1/2)TiO3 - xBaTiO 3 (x = 0.03, 0.06, and 0.09) doped with 0.5 mol% Mn (BNT-100xBT:Mn) was established. Transition lines between ergodic or nonergodic relaxor states and the field-induced ferroelectric state were determined at constant temperatures with electric-field-dependent measurements of the polarization as well as of the piezoelectric coefficient and permittivity. Near the depolarization temperature Td, the switching between two ferroelectric poling directions occurs in two steps via an intermediate relaxor state. This effect is closely related to the pinching of the ferroelectric hysteresis loop.open2

    Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics

    Get PDF
    The mechanism of the giant unipolar strain recently observed in a lead-free piezoceramic, 0.92(Bi0.5Na0.5)TiO3-0.06BaTiO(3)-0.02(K0.5Na0.5)NbO3 [S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, Appl. Phys. Lett. 91, 112906 (2007) was investigated. The validity of the previously proposed mechanism that the high strain comes both from a significant volume change during the field-induced phase transition, from an antiferroelectric to a ferroelectric phase and the domain contribution from the induced ferroelectric phase was examined. Monitoring the volume changes from the simultaneously measured longitudinal and transverse strains on disk-shaped samples showed that the phase transition in this specific material does not involve any notable volume change, which indicates that there is little contribution from a volume change due to the phase transition to the total strain response. Temperature dependent hysteresis measurements on unpoled samples of a nearby ferroelectric composition, 0.93(Bi0.5Na0.5)TiO3-0.06BaTiO(3) -0.01(K0.5Na0.5)NbO3 demonstrated that the origin of the large strain is due to the presence of a nonpolar phase that brings the system back to its unpoled state once the applied electric field is removed, which leads to a large unipolar strain.open1539

    Influence of electric fields on the depolarization temperature of Mn-doped (1-x)Bi1/2Na1/2TiO3-xBaTiO(3)

    Get PDF
    The transition between induced long-range order and relaxor-like behavior upon heating is investigated in lead-free (1-x)Bi1/2Na1/2(Ti0.995Mn0.005)O-3-xBa(Ti0.995Mn0.005)O-3 piezoceramics with x = 0.03, 0.06, and 0.09 (BNT-100xBT:Mn). Temperature-dependent permittivity epsilon'(T) and thermally stimulated depolarization currents (TSDC) of poled samples were measured under identical heating conditions to clarify the depolarization mechanism. In both methods, the influence of electric bias fields on the transition temperature was investigated. Fields applied in the poling direction shift the transition to higher temperatures, with corresponding results in epsilon'(T) and TSDC measurements. While the response of transition temperature to external fields displays a similar trend in all investigated compositions, the shape of TSDC is clearly connected with the composition and, hence, the crystal symmetry of the sample. Furthermore, the comparison of epsilon'(T) and TSDC data reveals a systematic shift between transition temperatures obtained with the two different methods.open322

    Increasing bulk photovoltaic current by strain tuning

    Get PDF
    Photovoltaic phenomena are widely exploited not only for primary energy generation but also in photocatalytic, photoelectrochemistry, or optoelectronic applications. In contrast to the interface-based photovoltaic effect of semiconductors, the anomalous or bulk photovoltaic effect in ferroelectrics is not bound by the Shockley-Queisser limit and, thus, can potentially reach high efficiencies. Here, we observe in the example of an Fe-doped LiNbO3 bulk single crystal the existence of a purely intrinsic ``piezophotovoltaic'' effect that leads to a linear increase in photovoltaic current density. The increase reaches 75 under a low uniaxial compressive stress of 10 MPa, corresponding to a strain of only 0.005\%. The physical origin and symmetry properties of the effect are investigated, and its potential for strain-tuned efficiency increase in nonconventional photovoltaic materials is presented

    Morphotropic phase boundary in (1-x)Bi0.5Na0.5TiO3-xK(0.5)Na(0.5)NbO(3) lead-free piezoceramics

    Get PDF
    The electromechanical behavior of (1-x)Bi0.5Na0.5TiO3-xK(0.5)Na(0.5)NbO(3) (BNT-KNN) lead free piezoelectric ceramics is investigated for 0 <= x <= 0.12 to gain insight into the antiferroelectric-ferroelectric (AFE-FE) phase transition on the basis of the giant strain recently observed in BNT-based systems. At x approximate to 0.07, a morphotropic phase boundary (MPB) between a rhombohedral FE phase and a tetragonal AFE phase is found. While the piezoelectric coefficient is largest at this MPB, the total strain further increases with increasing KNN content, indicating the field-induced AFE-FE transition as the main reason for the large strain.open756

    Effect of Nb-donor and Fe-acceptor dopants in (Bi1/2Na1/2)TiO3-BaTiO3-(K0.5Na0.5)NbO3 lead-free piezoceramics

    Get PDF
    The role of Fe as an acceptor and Nb as a donor in [0.94-x](Bi1/2Na1/2)TiO3-0.06BaTiO(3)-x (K0.5Na0.5)NbO3 (100xKNN) (x=0.02 and 0.03) lead-free piezoceramics was investigated. X-ray diffraction analyses show that all the profiles are best-fitted with a cubic symmetry where Fe doping tends to induce a lattice expansion, while Nb doping does the opposite. The strain and polarization characteristics are enhanced and suppressed by the acceptor and donor dopants, respectively. The improvement in the electrical properties with acceptor doping is accompanied by the stabilization of a ferroelectric order. Electron paramagnetic resonance spectroscopic analysis suggests that the stabilization of the ferroelectric order by the Fe dopant originates from the formation of (Fe-Ti'-V-O(center dot center dot))(center dot) defect dipoles.open211

    Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties

    Get PDF
    The temperature dependence of the dielectric and ferroelectric properties of lead-free piezoceramics of the composition (1-x-y)Bi0.5Na0.5TiO3-xBaTiO(3)-yK(0.5)Na(0.5)NbO(3) (0.05 <= x <= 0.07, 0.01 <= y <= 0.03) was investigated. Measurements of the polarization and strain hystereses indicate a transition to predominantly antiferroelectric order when heating from room temperature to 150 degrees C, while for 150 < T < 200 degrees C both remnant polarization and coercive field increase. Frequency-dependent susceptibility measurements show that the transition is relaxorlike. For some samples, the transition temperature T-d is high enough to allow mostly ferroelectric ordering at room temperature. These samples show a drastic increase of the usable strain under an external electric field just after the transition into the antiferroelectric state at high temperatures. For the other samples, T-d is so low that they display significant antiferroelectric ordering already at room temperature. In these samples, the usable strain is relatively stable over a wide temperature range. In contrast to T-d, the temperature T-m of the transition into the paraelectric high-temperature phase depends far less on the sample composition. These results confirm that the high strain in this lead-free system is due to a field-induced antiferroelectric-ferroelectric phase transition and that this effect can be utilized in a wide temperature range.open8

    Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties

    Get PDF
    Lead-free piezoelectric ceramics, (1-x-y)Bi0.5Na0.5TiO3-xBaTiO(3)-yK(0.5)Na(0.5)NbO(3) (0.05 <= x <= 0.07 and 0.01 <= y <= 0.03), have been synthesized by a conventional solid state sintering method. The room temperature ferroelectric and piezoelectric properties of these ceramics were studied. Based on the measured properties, the ceramics were categorized into two groups: group I compositions having dominant ferroelectric order and group II compositions displaying mixed ferroelectric and antiferroelectric properties at room temperature. A composition from group II near the boundary between these two groups exhibited a strain as large as similar to 0.45% at an electric field of 8 kV/mm. Polarization in this composition was not stable in that the piezoelectric coefficient d(33) at zero electric field was only about 30 pm/V. The converse piezoelectric response becomes weaker when the composition deviated from the boundary between the groups toward either the ferroelectric or antiferroelectric compositions. These results were rationalized based on a field induced antiferroelectric-ferroelectric phase transition.open12510

    Effect of tetragonal distortion on ferroelectric domain switching: A case study on La-doped BiFeO3-PbTiO3 ceramics

    Get PDF
    The ferroelectric and piezoelectric properties of (1-x)BiFeO3-xPbTiO(3) (BF-PT) ceramics were investigated as a function of tetragonal distortion. The latter was adjusted by employing La-doping (0-30 at %) while keeping the material near the morphotropic phase boundary by varying x between 0.35 and 0.46. This allows changing the c/a ratio of tetragonal BF-PT in the range from 1.10-1.01 and consequently alters the level of compatibility stresses. It was found that the c/a ratio has a significant influence on domain switching as inferred from electric field induced polarization, strain hysteresis, and Rayleigh measurements. Specifically, a threshold c/a ratio of about 1.045 was identified below which the electric field induced domain mobility increases sharply.open342
    corecore