1,869 research outputs found

    The millimeter and submillimeter laboratory spectrum of methyl formate in its ground symmetric torsional state

    Get PDF
    Over 200 rotational lines of methyl formate in its ground (v-t = 0), symmetric (A) torsional state have been measured in the frequency range 140-550 GHz. Analysis of these and lower frequency transitions permits accurate prediction (≤0.1 MHz) of over 10,000 transitions at frequencies below 600 GHz with angular momentum J ≤ 50. The measured spectral lines have permitted identification of over 100 new methyl formate lines in Orion

    Entanglement Wedge Reconstruction via Universal Recovery Channels

    Get PDF
    We apply and extend the theory of universal recovery channels from quantum information theory to address the problem of entanglement wedge reconstruction in AdS/CFT. It has recently been proposed that any low-energy local bulk operators in a CFT boundary region's entanglement wedge can be reconstructed on that boundary region itself. Existing work arguing for this proposal relies on algebraic consequences of the exact equivalence between bulk and boundary relative entropies, namely the theory of operator algebra quantum error correction. However, bulk and boundary relative entropies are only approximately equal in bulk effective field theory, and in similar situations it is known that predictions from exact entropic equalities can be qualitatively incorrect. The framework of universal recovery channels provides a robust demonstration of the entanglement wedge reconstruction conjecture in addition to new physical insights. Most notably, we find that a bulk operator acting in a given boundary region's entanglement wedge can be expressed as the response of the boundary region's modular Hamiltonian to a perturbation of the bulk state in the direction of the bulk operator. This formula can be interpreted as a noncommutative version of Bayes' rule that attempts to undo the noise induced by restricting to only a portion of the boundary, and has an integral representation in terms of modular flows. To reach these conclusions, we extend the theory of universal recovery channels to finite-dimensional operator algebras and demonstrate that recovery channels approximately preserve the multiplicative structure of the operator algebra.Comment: 16 pages, 3 figures. v4: Generalized approximate recovery of 2-point functions to arbitrary correlation functions. Clarified relation to previous work. Added Geoffrey Penington as co-autho

    Use of Radioactive Antibodies for Characterizing Antigens and Application to the Study of Flagella Synthesis

    Get PDF
    A simple rapid immunochemical procedure has been developed which provides information about the qualitative and quantitative nature of antigens. It involves the use of purified radioactive (^(125)I-labeled) antibodies. The amount of antibody bound to the antigen is determined by filtering the mixture through diethylaminoethyl (DEAE)-cellulose paper. All of the antigen, as well as the antibody complexed with it, is trapped on the paper, whereas free antibody is removed by repeated washing. This technique has been applied to the study of three immune systems, bovine serum albumin, Escherichia coli tryptophan synthetase B protein, and Bacillus subtilis flagella. The results obtained by the DEAE-antibody binding technique were comparable, in terms of sensitivity, specificity, and accuracy, to data obtained by microcomplement fixation and precipitin methods. The assay was used to measure the kinetics of flagella regeneration in B. subtilis

    The laboratory millimeter-wave spectrum of methyl formate in its ground torsional E state

    Get PDF
    Over 250 rotational transitions of the internal rotor methyl formate (HCOOCH_3) in its ground v_t = 0 degenerate (E) torsional substate have been measured in the millimeter-wave spectral region. These data and a number of E-state lines identified by several other workers have been analyzed using an extension of the classical principal-axis method in the high barrier limit. The resulting rotational constants allow accurate prediction of the v_t = 0 E substate methyl formate spectrum below 300 GHz between states with angular momentum J ≤ 30 and rotational energy E_(rot)≤ 350cm^(-1). The calculated transition frequencies for the E state, when combined with the results of the previous analysis of the ground-symmetric, nondegenerate state, account for over 200 of the emission lines observed toward Orion in a recent survey of the 215-265 GHz band

    TB or not TB? Acoustic cough analysis for tuberculosis classification

    Full text link
    In this work, we explore recurrent neural network architectures for tuberculosis (TB) cough classification. In contrast to previous unsuccessful attempts to implement deep architectures in this domain, we show that a basic bidirectional long short-term memory network (BiLSTM) can achieve improved performance. In addition, we show that by performing greedy feature selection in conjunction with a newly-proposed attention-based architecture that learns patient invariant features, substantially better generalisation can be achieved compared to a baseline and other considered architectures. Furthermore, this attention mechanism allows an inspection of the temporal regions of the audio signal considered to be important for classification to be performed. Finally, we develop a neural style transfer technique to infer idealised inputs which can subsequently be analysed. We find distinct differences between the idealised power spectra of TB and non-TB coughs, which provide clues about the origin of the features in the audio signal.Comment: Accepted for publication at Interspeech 202

    Entanglement wedge reconstruction using the Petz map

    Get PDF
    At the heart of recent progress in AdS/CFT is the question of subregion duality, or entanglement wedge reconstruction: which part(s) of the boundary CFT are dual to a given subregion of the bulk? This question can be answered by appealing to the quantum error correcting properties of holography, and it was recently shown that robust bulk (entanglement wedge) reconstruction can be achieved using a universal recovery channel known as the twirled Petz map. In short, one can use the twirled Petz map to recover bulk data from a subset of the boundary. However, this map involves an averaging procedure over bulk and boundary modular time, and hence it can be somewhat intractable to evaluate in practice. We show that a much simpler channel, the Petz map, is sufficient for entanglement wedge reconstruction for any code space of fixed finite dimension — no twirling is required. Moreover, the error in the reconstruction will always be non-perturbatively small. From a quantum information perspective, we prove a general theorem extending the use of the Petz map as a general-purpose recovery channel to subsystem and operator algebra quantum error correction
    • …
    corecore