54 research outputs found

    Deformed oscillator algebras for two dimensional quantum superintegrable systems

    Full text link
    Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable systema deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrodinger equation. The method shows how quantum algebraic techniques can simplify the study of quantum superintegrable systems, especially in two dimensions.Comment: 22 pages, THES-TP 10/93, hep-the/yymmnn

    Infinite families of superintegrable systems separable in subgroup coordinates

    Full text link
    A method is presented that makes it possible to embed a subgroup separable superintegrable system into an infinite family of systems that are integrable and exactly-solvable. It is shown that in two dimensional Euclidean or pseudo-Euclidean spaces the method also preserves superintegrability. Two infinite families of classical and quantum superintegrable systems are obtained in two-dimensional pseudo-Euclidean space whose classical trajectories and quantum eigenfunctions are investigated. In particular, the wave-functions are expressed in terms of Laguerre and generalized Bessel polynomials.Comment: 19 pages, 6 figure

    Deformed algebras, position-dependent effective masses and curved spaces: An exactly solvable Coulomb problem

    Full text link
    We show that there exist some intimate connections between three unconventional Schr\"odinger equations based on the use of deformed canonical commutation relations, of a position-dependent effective mass or of a curved space, respectively. This occurs whenever a specific relation between the deforming function, the position-dependent mass and the (diagonal) metric tensor holds true. We illustrate these three equivalent approaches by considering a new Coulomb problem and solving it by means of supersymmetric quantum mechanical and shape invariance techniques. We show that in contrast with the conventional Coulomb problem, the new one gives rise to only a finite number of bound states.Comment: 22 pages, no figure. Archive version is already official. Published by JPA at http://stacks.iop.org/0305-4470/37/426

    Connection Between Type A and E Factorizations and Construction of Satellite Algebras

    Full text link
    Recently, we introduced a new class of symmetry algebras, called satellite algebras, which connect with one another wavefunctions belonging to different potentials of a given family, and corresponding to different energy eigenvalues. Here the role of the factorization method in the construction of such algebras is investigated. A general procedure for determining an so(2,2) or so(2,1) satellite algebra for all the Hamiltonians that admit a type E factorization is proposed. Such a procedure is based on the known relationship between type A and E factorizations, combined with an algebraization similar to that used in the construction of potential algebras. It is illustrated with the examples of the generalized Morse potential, the Rosen-Morse potential, the Kepler problem in a space of constant negative curvature, and, in each case, the conserved quantity is identified. It should be stressed that the method proposed is fairly general since the other factorization types may be considered as limiting cases of type A or E factorizations.Comment: 20 pages, LaTeX, no figure, to be published in J. Phys.

    Families of superintegrable Hamiltonians constructed from exceptional polynomials

    Full text link
    We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable

    Casimir Effect as a Test for Thermal Corrections and Hypothetical Long-Range Interactions

    Full text link
    We have performed a precise experimental determination of the Casimir pressure between two gold-coated parallel plates by means of a micromachined oscillator. In contrast to all previous experiments on the Casimir effect, where a small relative error (varying from 1% to 15%) was achieved only at the shortest separation, our smallest experimental error (0.5\sim 0.5%) is achieved over a wide separation range from 170 nm to 300 nm at 95% confidence. We have formulated a rigorous metrological procedure for the comparison of experiment and theory without resorting to the previously used root-mean-square deviation, which has been criticized in the literature. This enables us to discriminate among different competing theories of the thermal Casimir force, and to resolve a thermodynamic puzzle arising from the application of Lifshitz theory to real metals. Our results lead to a more rigorous approach for obtaining constraints on hypothetical long-range interactions predicted by extra-dimensional physics and other extensions of the Standard Model. In particular, the constraints on non-Newtonian gravity are strengthened by up to a factor of 20 in a wide interaction range at 95% confidence.Comment: 17 pages, 7 figures, Sixth Alexander Friedmann International Seminar on Gravitation and Cosmolog

    An SU(2) Analog of the Azbel--Hofstadter Hamiltonian

    Full text link
    Motivated by recent findings due to Wiegmann and Zabrodin, Faddeev and Kashaev concerning the appearence of the quantum U_q(sl(2)) symmetry in the problem of a Bloch electron on a two-dimensional magnetic lattice, we introduce a modification of the tight binding Azbel--Hofstadter Hamiltonian that is a specific spin-S Euler top and can be considered as its ``classical'' analog. The eigenvalue problem for the proposed model, in the coherent state representation, is described by the S-gap Lam\'e equation and, thus, is completely solvable. We observe a striking similarity between the shapes of the spectra of the two models for various values of the spin S.Comment: 19 pages, LaTeX, 4 PostScript figures. Relation between Cartan and Cartesian deformation of SU(2) and numerical results added. Final version as will appear in J. Phys. A: Math. Ge

    Higher Order Quantum Superintegrability: a new "Painlev\'e conjecture"

    Full text link
    We review recent results on superintegrable quantum systems in a two-dimensional Euclidean space with the following properties. They are integrable because they allow the separation of variables in Cartesian coordinates and hence allow a specific integral of motion that is a second order polynomial in the momenta. Moreover, they are superintegrable because they allow an additional integral of order N>2N>2. Two types of such superintegrable potentials exist. The first type consists of "standard potentials" that satisfy linear differential equations. The second type consists of "exotic potentials" that satisfy nonlinear equations. For N=3N= 3, 4 and 5 these equations have the Painlev\'e property. We conjecture that this is true for all N3N\geq3. The two integrals X and Y commute with the Hamiltonian, but not with each other. Together they generate a polynomial algebra (for any NN) of integrals of motion. We show how this algebra can be used to calculate the energy spectrum and the wave functions.Comment: 23 pages, submitted as a contribution to the monographic volume "Integrability, Supersymmetry and Coherent States", a volume in honour of Professor V\'eronique Hussin. arXiv admin note: text overlap with arXiv:1703.0975
    corecore