828 research outputs found

    Emergence of a confined state in a weakly bent wire

    Full text link
    In this paper we use a simple straightforward technique to investigate the emergence of a bound state in a weakly bent wire. We show that the bend behaves like an infinitely shallow potential well, and in the limit of small bending angle and low energy the bend can be presented by a simple 1D delta function potential.Comment: 4 pages, 3 Postscript figures (uses Revtex); added references and rewritte

    Scatterer that leaves "footprints" but no "fingerprints"

    Full text link
    We calculate the exact transmission coefficient of a quantum wire in the presence of a single point defect at the wire's cut-off frequencies. We show that while the conductance pattern (i.e., the scattering) is strongly affected by the presence of the defect, the pattern is totally independent of the defect's characteristics (i.e., the defect that caused the scattering cannot be identified from that pattern).Comment: 4 pages, 3 figure

    Cell adhesion molecules and hyaluronic acid as markers of inflammation, fibrosis and response to antiviral therapy in chronic hepatitis C patients.

    Get PDF
    OBJECTIVE: Cell adhesion molecules (intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1)) and hyaluronic acid, markers of inflammation and fibrosis were monitored in hepatitis C patients to determine whether changes in plasma levels, during antiviral treatment, can predict long-term response to therapy. METHODS: In 55 patients with chronic hepatitis C virus (HCV), 33 treated with interferon (IFN) and 22 treated with IFN + ribavirin, sera was collected prior to treatment, at 3 + 6 months of therapy and 6 months post-treatment. Levels of ICAM-1, VCAM-1 and hyaluronic acid were correlated with alanine aminotransferase levels, HCV-RNA-polymerase chain reaction status and histological fibrosis scoring. RESULTS: A decrease in ICAM-1 levels at 3 and 6 months of therapy, compared with pretreatment levels, was observed in responders to IFN + ribavirin therapy but this decrease in ICAM-1 levels was not evident following cessation of treatment. Hyaluronic acid levels, in both treatment groups, did not differ significantly between responders and non-responders. Hyaluronic acid levels did correlate, significantly, with degree of fibrosis whereas VCAM-1 levels were marginally increased only in patients with moderate (grade III) fibrosis. CONCLUSIONS: Monitoring of VCAM-1 and hyaluronic acid, during antiviral therapy, does not differentiate between responders and non-responders. A decrease in ICAM-1 levels during IFN + ribavirin treatment is associated with response to therapy, and its efficacy in predicting long-term response should be further substantiated

    Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29

    Get PDF
    GRB 050904 at redshift z=6.29, discovered and observed by Swift and with spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst to be identified from beyond the epoch of reionization. Since the progenitors of long gamma-ray bursts have been identified as massive stars, this event offers a unique opportunity to investigate star formation environments at this epoch. Apart from its record redshift, the burst is remarkable in two respects: first, it exhibits fast-evolving X-ray and optical flares that peak simultaneously at t~470 s in the observer frame, and may thus originate in the same emission region; and second, its afterglow exhibits an accelerated decay in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst, coincident with repeated and energetic X-ray flaring activity. We make a complete analysis of available X-ray, NIR, and radio observations, utilizing afterglow models that incorporate a range of physical effects not previously considered for this or any other GRB afterglow, and quantifying our model uncertainties in detail via Markov Chain Monte Carlo analysis. In the process, we explore the possibility that the early optical and X-ray flare is due to synchrotron and inverse Compton emission from the reverse shock regions of the outflow. We suggest that the period of accelerated decay in the NIR may be due to suppression of synchrotron radiation by inverse Compton interaction of X-ray flare photons with electrons in the forward shock; a subsequent interval of slow decay would then be due to a progressive decline in this suppression. The range of acceptable models demonstrates that the kinetic energy and circumburst density of GRB 050904 are well above the typical values found for low-redshift GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor modifications and 1 extra figur

    High energy neutrino early afterglows from gamma-ray bursts revisited

    Get PDF
    The high energy neutrino emission from gamma-ray bursts (GRBs) has been expected in various scenarios. In this paper, we study the neutrino emission from early afterglows of GRBs, especially under the reverse-forward shock model and late prompt emission model. In the former model, the early afterglow emission occurs due to dissipation made by an external shock with the circumburst medium (CBM). In the latter model, internal dissipation such as internal shocks produces the shallow decay emission in early afterglows. We also discuss implications of recent Swift observations for neutrino signals in detail. Future neutrino detectors such as IceCube may detect neutrino signals from early afterglows, especially under the late prompt emission model, while the detection would be difficult under the reverse-forward shock model. Contribution to the neutrino background from the early afterglow emission may be at most comparable to that from the prompt emission unless the outflow making the early afterglow emission loads more nonthermal protons, and it may be important in the very high energies. Neutrino-detections are inviting because they could provide us with not only information on baryon acceleration but also one of the clues to the model of early afterglows. Finally, we compare various predictions for the neutrino background from GRBs, which are testable by future neutrino-observations.Comment: 18 pages, 12 figures, accepted for publication in PR

    A new method of determining the initial size and Lorentz factor of gamma-ray burst fireballs using a thermal emission component

    Get PDF
    In recent years increasing evidence has emerged for a thermal component in the gamma- and X-ray spectrum of the prompt emission phase in gamma-ray bursts. The temperature and flux of the thermal component show a characteristic break in the temporal behavior after a few seconds. We show here, that measurements of the temperature and flux of the thermal component at early times (before the break) allow the determination of the values of two of the least restricted fireball model parameters: the size at the base of the flow and the outflow bulk Lorentz factor. Relying on the thermal emission component only, this measurement is insensitive to the inherent uncertainties of previous estimates of the bulk motion Lorentz factor. We give specific examples of the use of this method: for GRB970828 at redshift z=0.9578, we show that the physical size at the base of the flow is r_0 = (2.9+-1.8)*10^8 Y_0^{-3/2} cm and the Lorentz factor of the flow is Gamma = (305\+-28) Y_0^{1/4}, and for GRB990510 at z=1.619, r_0=(1.7+-1.7)*10^8 Y_0^{-3/2} cm and Gamma=(384+-71) Y_0^{1/4}, where Y = 1 Y_0 is the ratio between the total fireball energy and the energy emitted in gamma- rays.Comment: Discussion added on gamma-ray emission efficiency. Accepted for publication in Ap.J. Let

    The Onset of Gamma-Ray Burst Afterglow

    Get PDF
    We discuss the reference time t_0 of afterglow light curves in the context of the standard internal-external shock model. The decay index of early afterglow is very sensitive to the reference time one chooses. In order to understand the nature of early afterglow, it is essential to take a correct reference time. Our simple analytic model provides a framework to understand special relativistic effects involved in early afterglow phase. We evaluate light curves of reverse shock emission as well as those of forward shock emission, based on full hydrodynamic calculations. We show that the reference time does not shift significantly even in the thick shell case. For external shock emission components, measuring times from the beginning of the prompt emission is a good approximation and it does not cause an early steep decay. In the thin shell case, the energy transfer time from fireball ejecta to ambient medium typically extends to thousands of seconds. This might be related to the shallow decay phases observed in early X-ray afterglow at least for some bursts.Comment: 22 pages, 7 figures, accepted for publication in Ap

    Detectability of GRB optical afterglows with Gaia satellite

    Full text link
    With the launch of Gaia satellite, detection of many different types of transient sources will be possible, one of them being optical afterglows of gamma-ray bursts (GRBs). Using the knowledge of the satellites dynamics and properties of GRB optical afterglows we performed a simulation in order to estimate an average GRB detection rate with Gaia. Here we present the simulation results for two types of GRB optical afterglows, differing in the observer's line-of-sight compared to a GRB jet axis: regular (on-axis) and orphan afterglows. Results show that for on-axis GRBs, less than 10 detections in five years of foreseen Gaia operational time are expected. The orphan afterglows simulation results are more promising, giving a more optimistic number of several tens of detections in five years.Comment: 14 pages, 10 figures, accepted to PAS
    • 

    corecore