4 research outputs found

    Quantum particle displacement by a moving localized potential trap

    Full text link
    We describe the dynamics of a bound state of an attractive δ\delta-well under displacement of the potential. Exact analytical results are presented for the suddenly moved potential. Since this is a quantum system, only a fraction of the initially confined wavefunction remains confined to the moving potential. However, it is shown that besides the probability to remain confined to the moving barrier and the probability to remain in the initial position, there is also a certain probability for the particle to move at double speed. A quasi-classical interpretation for this effect is suggested. The temporal and spectral dynamics of each one of the scenarios is investigated.Comment: 5 pages, 6 figure

    Exact propagators for atom-laser interactions

    Get PDF
    A class of exact propagators describing the interaction of an NN-level atom with a set of on-resonance δ\delta-lasers is obtained by means of the Laplace transform method. State-selective mirrors are described in the limit of strong lasers. The ladder, V and Λ\Lambda configurations for a three-level atom are discussed. For the two level case, the transient effects arising as result of the interaction between both a semi-infinite beam and a wavepacket with the on-resonance laser are examined.Comment: 13 pages, 6 figure
    corecore