184 research outputs found
Reentrant nu = 1 quantum Hall state in a two-dimensional hole system
We report the observation of a reentrant quantum Hall state at the Landau
level filling factor nu = 1 in a two-dimensional hole system confined to a
35-nm-wide (001) GaAs quantum well. The reentrant behavior is characterized by
a weakening and eventual collapse of the nu = 1 quantum Hall state in the
presence of a parallel magnetic field component B||, followed by a
strengthening and reemergence as B|| is further increased. The robustness of
the nu = 1 quantum Hall state during the transition depends strongly on the
charge distribution symmetry of the quantum well, while the magnitude of B||
needed to invoke the transition increases with the total density of the system
Spacecraft Geometry Effects on Kinetic Impactor Missions
The DART (Double Asteroid Redirection Test) mission will impact a spacecraft on the secondary (Dimorphos) of the binary asteroid system Didymos in 2022 September, with the goal of altering the orbital period of Dimorphos about Didymos sufficiently to be observed from ground-based observations. Numerical impact modeling is a crucial component in understanding the outcome of the DART experiment, and while many have investigated the effects of target properties, such as material strength and porosity (which remain unknown), an often overlooked factor is the importance of accurately representing the spacecraft itself in such models. Most impact modeling to date has considered simple impactor geometries such as a solid uniform sphere, but in reality the spacecraft is a complex shape full of different components, open spaces, and thin walled structures. At a minimum, a simple solid representation underestimates the surface area of the impact: for a small body such as Dimorphos (approximately 160 m in diameter), the difference between a spacecraft spanning 20 m (including solar arrays) impacting and a sub-1 m idealized shape may be important. In this paper, we compare models impacting high-fidelity models of the spacecraft based on the CAD geometry with various simplified impactors, in order to assess the potential importance of this effect. We find that the difference between the simplest impactor geometries (such as a uniform sphere) and the real spacecraft is measurable, and has an interesting dependence on the material properties of the asteroid itself
Even-denominator Fractional Quantum Hall Effect at a Landau Level Crossing
The fractional quantum Hall effect (FQHE), observed in two-dimensional (2D)
charged particles at high magnetic fields, is one of the most fascinating,
macroscopic manifestations of a many-body state stabilized by the strong
Coulomb interaction. It occurs when the filling factor () of the quantized
Landau levels (LLs) is a fraction which, with very few exceptions, has an odd
denominator. In 2D systems with additional degrees of freedom it is possible to
cause a crossing of the LLs at the Fermi level. At and near these crossings,
the FQHE states are often weakened or destroyed. Here we report the observation
of an unusual crossing of the two \emph{lowest-energy} LLs in high-mobility
GaAs 2D systems which brings to life a new \emph{even-denominator} FQHE
at
Rapid Diagnostic Algorithms as a Screening Tool for Tuberculosis: An Assessor Blinded Cross-Sectional Study
Background: A major obstacle to effectively treat and control tuberculosis is the absence of an accurate, rapid, and low-cost diagnostic tool. A new approach for the screening of patients for tuberculosis is the use of rapid diagnostic classification algorithms.
Methods: We tested a previously published diagnostic algorithm based on four biomarkers as a screening tool for
tuberculosis in a Central European patient population using an assessor-blinded cross-sectional study design. In addition, we developed an improved diagnostic classification algorithm based on a study population at a tertiary hospital in Vienna, Austria, by supervised computational statistics.
Results: The diagnostic accuracy of the previously published diagnostic algorithm for our patient population consisting of 206 patients was 54% (CI: 47%–61%). An improved model was constructed using inflammation parameters and clinical information. A diagnostic accuracy of 86% (CI: 80%–90%) was demonstrated by 10-fold cross validation. An alternative model relying solely on clinical parameters exhibited a diagnostic accuracy of 85% (CI: 79%–89%).
Conclusion: Here we show that a rapid diagnostic algorithm based on clinical parameters is only slightly improved by
inclusion of inflammation markers in our cohort. Our results also emphasize the need for validation of new diagnostic algorithms in different settings and patient populations
The cometary composition of a protoplanetary disk as revealed by complex cyanides
Observations of comets and asteroids show that the Solar Nebula that spawned
our planetary system was rich in water and organic molecules. Bombardment
brought these organics to the young Earth's surface, seeding its early
chemistry. Unlike asteroids, comets preserve a nearly pristine record of the
Solar Nebula composition. The presence of cyanides in comets, including 0.01%
of methyl cyanide (CH3CN) with respect to water, is of special interest because
of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like
compositions of simple and complex volatiles are found in protostars, and can
be readily explained by a combination of gas-phase chemistry to form e.g. HCN
and an active ice-phase chemistry on grain surfaces that advances
complexity[3]. Simple volatiles, including water and HCN, have been detected
previously in Solar Nebula analogues - protoplanetary disks around young stars
- indicating that they survive disk formation or are reformed in situ. It has
been hitherto unclear whether the same holds for more complex organic molecules
outside of the Solar Nebula, since recent observations show a dramatic change
in the chemistry at the boundary between nascent envelopes and young disks due
to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and
HC3N) in the protoplanetary disk around the young star MWC 480. We find
abundance ratios of these N-bearing organics in the gas-phase similar to
comets, which suggests an even higher relative abundance of complex cyanides in
the disk ice. This implies that complex organics accompany simpler volatiles in
protoplanetary disks, and that the rich organic chemistry of the Solar Nebula
was not unique.Comment: Definitive version of the manuscript is published in Nature, 520,
7546, 198, 2015. This is the author's versio
After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission
NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos
The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test1. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact. On the basis of the change in the binary orbit period2, we find an instantaneous reduction in Dimorphos’s along-track orbital velocity component of 2.70 ± 0.10 mm s−1, indicating enhanced momentum transfer due to recoil from ejecta streams produced by the impact3,4. For a Dimorphos bulk density range of 1,500 to 3,300 kg m−3, we find that the expected value of the momentum enhancement factor, β, ranges between 2.2 and 4.9, depending on the mass of Dimorphos. If Dimorphos and Didymos are assumed to have equal densities of 2,400 kg m−3, β=3.61−0.25+0.19(1σ). These β values indicate that substantially more momentum was transferred to Dimorphos from the escaping impact ejecta than was incident with DART. Therefore, the DART kinetic impact was highly effective in deflecting the asteroid Dimorphos
Effects of Impact and Target Parameters on the Results of a Kinetic Impactor: Predictions for the Double Asteroid Redirection Test (DART) Mission
The Double Asteroid Redirection Test (DART) spacecraft will impact into the asteroid Dimorphos on 2022 September 26 as a test of the kinetic impactor technique for planetary defense. The efficiency of the deflection following a kinetic impactor can be represented using the momentum enhancement factor, β, which is dependent on factors such as impact geometry and the specific target material properties. Currently, very little is known about Dimorphos and its material properties, which introduces uncertainty in the results of the deflection efficiency observables, including crater formation, ejecta distribution, and β. The DART Impact Modeling Working Group (IWG) is responsible for using impact simulations to better understand the results of the DART impact. Pre-impact simulation studies also provide considerable insight into how different properties and impact scenarios affect momentum enhancement following a kinetic impact. This insight provides a basis for predicting the effects of the DART impact and the first understanding of how to interpret results following the encounter. Following the DART impact, the knowledge gained from these studies will inform the initial simulations that will recreate the impact conditions, including providing estimates for potential material properties of Dimorphos and β resulting from DART’s impact. This paper summarizes, at a high level, what has been learned from the IWG simulations and experiments in preparation for the DART impact. While unknown, estimates for reasonable potential material properties of Dimorphos provide predictions for β of 1–5, depending on end-member cases in the strength regime
After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission
NASA’s Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos’s response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos’s near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction
A Whole Virus Pandemic Influenza H1N1 Vaccine Is Highly Immunogenic and Protective in Active Immunization and Passive Protection Mouse Models
The recent emergence and rapid spread of a novel swine-derived H1N1 influenza virus has resulted in the first influenza pandemic of this century. Monovalent vaccines have undergone preclinical and clinical development prior to initiation of mass immunization campaigns. We have carried out a series of immunogenicity and protection studies following active immunization of mice, which indicate that a whole virus, nonadjuvanted vaccine is immunogenic at low doses and protects against live virus challenge. The immunogenicity in this model was comparable to that of a whole virus H5N1 vaccine, which had previously been demonstrated to induce high levels of seroprotection in clinical studies. The efficacy of the H1N1 pandemic vaccine in protecting against live virus challenge was also seen to be equivalent to that of the H5N1 vaccine. The protective efficacy of the H1N1 vaccine was also confirmed using a severe combined immunodeficient (SCID) mouse model. It was demonstrated that mouse and guinea pig immune sera elicited following active H1N1 vaccination resulted in 100% protection of SCID mice following passive transfer of immune sera and lethal challenge. The immune responses to a whole virus pandemic H1N1 and a split seasonal H1N1 vaccine were also compared in this study. It was demonstrated that the whole virus vaccine induced a balanced Th-1 and Th-2 response in mice, whereas the split vaccine induced mainly a Th-2 response and only minimal levels of Th-1 responses. These data supported the initiation of clinical studies with the same low doses of whole virus vaccine that had previously been demonstrated to be immunogenic in clinical studies with a whole virus H5N1 vaccine
- …