44 research outputs found

    Quantum Entanglement in Second-quantized Condensed Matter Systems

    Full text link
    The entanglement between occupation-numbers of different single particle basis states depends on coupling between different single particle basis states in the second-quantized Hamiltonian. Thus in principle, interaction is not necessary for occupation-number entanglement to appear. However, in order to characterize quantum correlation caused by interaction, we use the eigenstates of the single-particle Hamiltonian as the single particle basis upon which the occupation-number entanglement is defined. Using the proper single particle basis, we discuss occupation-number entanglement in important eigenstates, especially ground states, of systems of many identical particles. The discussions on Fermi systems start with Fermi gas, Hatree-Fock approximation, and the electron-hole entanglement in excitations. The entanglement in a quantum Hall state is quantified as -fln f-(1-f)ln(1-f), where f is the proper fractional part of the filling factor. For BCS superconductivity, the entanglement is a function of the relative momentum wavefunction of the Cooper pair, and is thus directly related to the superconducting energy gap. For a spinless Bose system, entanglement does not appear in the Hatree-Gross-Pitaevskii approximation, but becomes important in the Bogoliubov theory.Comment: 11 pages. Journal versio

    New varying speed of light theories

    Full text link
    We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying cc, dispelling the myth that the constancy of cc is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying cc induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how ``doubly special'' relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra high energy cosmic rays and gamma ray bursts. Some recent work on the physics of ``black'' holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in cc. Finally we describe the observational status of the theory. The evidence is currently slim -- redshift dependence in the atomic fine structure, anomalies with ultra high energy cosmic rays, and (to a much lesser extent) the acceleration of the universe and the WMAP data. The constraints (e.g. those arising from nucleosynthesis or geological bounds) are tight, but not insurmountable. We conclude with the observational predictions of the theory, and the prospects for its refutation or vindication.Comment: Final versio
    corecore