44 research outputs found
Quantum Entanglement in Second-quantized Condensed Matter Systems
The entanglement between occupation-numbers of different single particle
basis states depends on coupling between different single particle basis states
in the second-quantized Hamiltonian. Thus in principle, interaction is not
necessary for occupation-number entanglement to appear. However, in order to
characterize quantum correlation caused by interaction, we use the eigenstates
of the single-particle Hamiltonian as the single particle basis upon which the
occupation-number entanglement is defined. Using the proper single particle
basis, we discuss occupation-number entanglement in important eigenstates,
especially ground states, of systems of many identical particles. The
discussions on Fermi systems start with Fermi gas, Hatree-Fock approximation,
and the electron-hole entanglement in excitations. The entanglement in a
quantum Hall state is quantified as -fln f-(1-f)ln(1-f), where f is the proper
fractional part of the filling factor. For BCS superconductivity, the
entanglement is a function of the relative momentum wavefunction of the Cooper
pair, and is thus directly related to the superconducting energy gap. For a
spinless Bose system, entanglement does not appear in the
Hatree-Gross-Pitaevskii approximation, but becomes important in the Bogoliubov
theory.Comment: 11 pages. Journal versio
New varying speed of light theories
We review recent work on the possibility of a varying speed of light (VSL).
We start by discussing the physical meaning of a varying , dispelling the
myth that the constancy of is a matter of logical consistency. We then
summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz
invariance; bimetric theories (where the speeds of gravity and light are not
the same); locally Lorentz invariant VSL theories; theories exhibiting a color
dependent speed of light; varying induced by extra dimensions (e.g. in the
brane-world scenario); and field theories where VSL results from vacuum
polarization or CPT violation. We show how VSL scenarios may solve the
cosmological problems usually tackled by inflation, and also how they may
produce a scale-invariant spectrum of Gaussian fluctuations, capable of
explaining the WMAP data. We then review the connection between VSL and
theories of quantum gravity, showing how ``doubly special'' relativity has
emerged as a VSL effective model of quantum space-time, with observational
implications for ultra high energy cosmic rays and gamma ray bursts. Some
recent work on the physics of ``black'' holes and other compact objects in VSL
theories is also described, highlighting phenomena associated with spatial (as
opposed to temporal) variations in . Finally we describe the observational
status of the theory. The evidence is currently slim -- redshift dependence in
the atomic fine structure, anomalies with ultra high energy cosmic rays, and
(to a much lesser extent) the acceleration of the universe and the WMAP data.
The constraints (e.g. those arising from nucleosynthesis or geological bounds)
are tight, but not insurmountable. We conclude with the observational
predictions of the theory, and the prospects for its refutation or vindication.Comment: Final versio