2,755 research outputs found
Fission widths of hot nuclei from Langevin dynamics
Fission dynamics of excited nuclei is studied in the framework of Langevin
equation. The one body wall-and-window friction is used as the dissipative
force in the Langevin equation. In addition to the usual wall formula friction,
the chaos weighted wall formula developed earlier to account for
nonintegrability of single-particle motion within the nuclear volume is also
considered here. The fission rate calculated with the chaos weighted wall
formula is found to be faster by about a factor of two than that obtained with
the usual wall friction. The systematic dependence of fission width on
temperature and spin of the fissioning nucleus is investigated and a simple
parametric form of fission width is obtained.Comment: RevTex, 12 pages including 9 Postscript figure
Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond
We demonstrate the tunable enhancement of the zero phonon line of a single
nitrogen-vacancy color center in diamond at cryogenic temperature. An open
cavity fabricated using focused ion beam milling provides mode volumes as small
as 1.24 m. In-situ tuning of the cavity resonance is achieved with
piezoelectric actuators. At optimal coupling of the full open cavity the signal
from individual zero phonon line transitions is enhanced by about a factor of
10 and the overall emission rate of the NV center is increased by 40%
compared with that measured from the same center in the absence of cavity field
confinement. This result is important for the realization of efficient
spin-photon interfaces and scalable quantum computing using optically
addressable solid state spin qubits.Comment: 11 pages Main Article + 4 pages Supplementary Info Typos fixed from
v
Polaron relaxation in self-assembled quantum dots: Breakdown of the semi-classical model
We calculate the lifetime of conduction band excited states in self-assembled
quantum dots by taking into account LO-phonon-electron interaction and various
anharmonic phonon couplings. We show that polaron relaxation cannot be
accurately described by a semi-classical model. The contributions of different
anharmonic decay channels are shown to depend strongly on the polaron energy.
We calculate the energy dependence of polaron lifetime and compare our results
to available experimental measurements of polaron decay time in InAs/GaAs
quantum dots.Comment: 5 pages, 4 figure, accepted for publication in Phys. Rev. B (Rapid
Com.
Integrating Learning And Visualization Technologies In Orthopaedics:- Establishing The Virtual Orthopaedic European University
Digital technologies offer a working environment for familiarisation with new surgical procedures and management of clinical case audit. Our aim is to provide a novel route for access to educational material that more closely resembles the working practice of the arthroscopist. This is to support higher surgical training and life long learning. The proof of concept has been the development of a shoulder arthroscopy simulation model as an interface for the surgical trainee to access multimedia based educational orthopaedic modules. This demonstrates a human-computer interface that more closely resembles the process of factual knowledge association during clinical procedures, moving toward the ultimate goal of seamless integration of knowledge repositories with clinical intervention operative video information, integrating the structured surgical course model with the multimedia educational orthopaedic modules, generated for the learning of shoulder surgery
- âŠ