11 research outputs found

    The INCREASE project: Intelligent Collections of food‐legume genetic resources for European agrofood systems

    Get PDF
    Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Differential capacity of chaperone-rich lysates in cross-presenting human endogenous and exogenous melanoma differentiation antigens.

    No full text
    The goal of immune-based tumor therapies is the activation of immune cells reactive against a broad spectrum of tumor-expressed antigens. Vaccines based on chaperone proteins appear promising as these proteins naturally exist as complexes with various protein fragments including those derived from tumor-associated antigens. Multi-chaperone systems are expected to have highest polyvalency as different chaperones can carry distinct sets of antigenic fragments. A free-solution isoelectric focusing (FS-IEF) technique was established to generate chaperone-rich cell lysates (CRCL). Results from murine systems support the contention that CRCL induce superior anti-tumor responses than single chaperone vaccines. We established an in vitro model for human melanoma to evaluate the capacity of CRCL to transfer endogenously expressed tumor antigens to the cross-presentation pathway of dendritic cells (DC) for antigen-specific T cell stimulation. CRCL prepared from human melanoma lines contained the four major chaperone proteins Hsp/Hsc70, Hsp90, Grp94/gp96 and calreticulin. The chaperones within the melanoma cell-derived CRCL were functionally active in that they enhanced cross-presentation of exogenous peptides mixed into the CRCL preparation. Superior activity was observed for Hsp70-rich CRCL obtained from heat-stressed melanoma cells. Despite the presence of active chaperones, melanoma cell-derived CRCL failed to transfer endogenously expressed melanoma-associated antigens to DC for cross-presentation and cytotoxic T cell (CTL) recognition, even after increasing intracellular protein levels of tumor antigen or chaperones. These findings reveal limitations of the CRCL approach regarding cross-presentation of endogenously expressed melanoma-associated antigens. Yet, CRCL may be utilized as vehicles to enhance the delivery of exogenous antigens for DC-mediated cross-presentation and T cell stimulation

    Disruption of C-Terminal Cytoplasmic Domain of βPS Integrin Subunit Has Dominant Negative Properties in Developing Drosophila

    No full text
    We have analyzed a set of new and existing strong mutations in the myospheroid gene, which encodes the βPS integrin subunit of Drosophila. In addition to missense and other null mutations, three mutants behave as antimorphic alleles, indicative of dominant negative properties. Unlike null alleles, the three antimorphic mutants are synthetically lethal in double heterozygotes with an inflated (αPS2) null allele, and they fail to complement very weak, otherwise viable alleles of myospheroid. Two of the antimorphs result from identical splice site lesions, which create a frameshift in the C-terminal half of the cytoplasmic domain of βPS. The third antimorphic mutation is caused by a stop codon just before the cytoplasmic splice site. These mutant βPS proteins can support cell spreading in culture, especially under conditions that appear to promote integrin activation. Analyses of developing animals indicate that the dominant negative properties are not a result of inefficient surface expression, or simple competition between functional and nonfunctional proteins. These data indicate that mutations disrupting the C-terminal cytoplasmic domain of integrin β subunits can have dominant negative effects in situ, at normal levels of expression, and that this property does not necessarily depend on a specific new protein sequence or structure. The results are discussed with respect to similar vertebrate β subunit cytoplasmic mutations

    Applying Cytogenetics and Genomics to Wide Hybridisations in the Genus Hordeum

    No full text

    Front Instabilities and Invasiveness of Simulated Avascular Tumors

    No full text
    corecore