34 research outputs found

    Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification

    The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters

    Get PDF
    We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr

    Expression of biomarkers (p53, transforming growth factor alpha, epidermal growth factor receptor, c-erbB-2/neu and the proliferative cell nuclear antigen) in oropharyngeal squamous cell carcinomas

    No full text
    Using immunohistochemistry, expression of p53, transforming growth factor-alpha (TGF-α), epidermal growth factor receptor (EGFR), c-erbB-2/neu and proliferating cell nuclear antigen (PCNA) was examined in 26 fresh frozen tissue specimens of oropharyngeal squamous cell carcinomas (SCCs). p53 gene mutations were examined by polymerase chain reaction (PCR)/DNA sequencing methods in 22 carcinomas. The findings were examined for correlations with patients’ clinicopathological parameters. Expressions of p53 and PCNA were also examined in 21 formalin-fixed corresponding tissues. Of the fresh frozen tissue specimens, 77% (20/26) showed expression and 68% (15/22) showed mutations (substitutions) of the p53, with significant clustering of the mutations in exons 5 (8/22; 36%), 7 (4/22; 18%) and 8 (5/22; 23%). No mutations were found in exon 6. There was a discordance between expression of p53 protein and mutations of the gene. Parallel to expression and mutations of the p53 found in most of the specimens, expression of TGF-α, EGFR, c-erbB-2/neu and PCNA was found in 88% (22/25), 92% (23/25), 58% (14/24) and 91% (21/23) of the specimens, respectively. For the formalin-fixed tissue specimens, 62% (13/21) and 90% (19/21) expressed p53 and PCNA, respectively. Examining for correlations with patients’ clinicopathological parameters, expression of p53, TGF-α, EGFR and c-erbB-2/neu seemed to negatively correlate with the increase of the tumour grade. The present work suggests that: (1) lack of negative growth regulation due to inactivation of the p53 gene together with activation of other proto-oncogenes are necessary genetic events in the carcinogenesis of oropharyngeal SCCs; (2) in oropharyngeal SCCs, p53 gene mutations were clustered in exons 5 (codons 130–186), 7 (codons 230–248) and 8 (codons 271–282) which perhaps suggests that tobacco carcinogens probably affect the mutational hot spots of the p53 gene at codons 157, 175, 186, 248, 273 and 282; and (3) fresh frozen and formalin-fixed tissue specimens give similar results when an immunohistochemical method is applied. The importance of p53, TGF-α, EGFR, c-erbB-2/neu and PCNA as biomarkers in oropharyngeal SCCs deserves particular attention because it might offer further understanding of the development of these carcinomas

    Attacking cancer's secretive side

    No full text

    Systematic prediction of human membrane receptor interactions

    No full text
    Membrane receptor-activated signal transduction pathways are integral to cellular functions and disease mechanisms in humans. Identification of the full set of proteins interacting with membrane receptors by high-throughput experimental means is difficult because methods to directly identify protein interactions are largely not applicable to membrane proteins. Unlike prior approaches that attempted to predict the global human interactome, we used a computational strategy that only focused on discovering the interacting partners of human membrane receptors leading to improved results for these proteins. We predict specific interactions based on statistical integration of biological data containing highly informative direct and indirect evidences together with feedback from experts. The predicted membrane receptor interactome provides a system-wide view, and generates new biological hypotheses regarding interactions between membrane receptors and other proteins. We have experimentally validated a number of these interactions. The results suggest that a framework of systematically integrating computational predictions, global analyses, biological experimentation and expert feedback is a feasible strategy to study the human membrane receptor interactome
    corecore