867 research outputs found

    Quantifying Tensions between CMB and Distance Datasets in Models with Free Curvature or Lensing Amplitude

    Get PDF
    Recent measurements of the Cosmic Microwave Background (CMB) by the Planck Collaboration have produced arguably the most powerful observational evidence in support of the standard model of cosmology, i.e. the spatially flat Λ\LambdaCDM paradigm. In this work, we perform model selection tests to examine whether the base CMB temperature and large scale polarization anisotropy data from Planck 2015 (P15) prefer any of eight commonly used one-parameter model extensions with respect to flat Λ\LambdaCDM. We find a clear preference for models with free curvature, ΩK\Omega_\mathrm{K}, or free amplitude of the CMB lensing potential, ALA_\mathrm{L}. We also further develop statistical tools to measure tension between datasets. We use a Gaussianization scheme to compute tensions directly from the posterior samples using an entropy-based method, the surprise, as well as a calibrated evidence ratio presented here for the first time. We then proceed to investigate the consistency between the base P15~CMB data and six other CMB and distance datasets. In flat Λ\LambdaCDM we find a 4.8σ4.8\sigma tension between the base P15~CMB data and a distance ladder measurement, whereas the former are consistent with the other datasets. In the curved Λ\LambdaCDM model we find significant tensions in most of the cases, arising from the well-known low power of the low-ℓ\ell multipoles of the CMB data. In the flat Λ\LambdaCDM +AL+A_\mathrm{L} model, however, all datasets are consistent with the base P15~CMB observations except for the CMB lensing measurement, which remains in significant tension. This tension is driven by the increased power of the CMB lensing potential derived from the base P15~CMB constraints in both models, pointing at either potentially unresolved systematic effects or the need for new physics beyond the standard flat Λ\LambdaCDM model.Comment: 16 pages, 8 figures, 6 table

    Genomic and Transcriptomic Alterations Associated with STAT3 Activation in Head and Neck Cancer.

    Get PDF
    BackgroundHyperactivation of STAT3 via constitutive phosphorylation of tyrosine 705 (Y705) is common in most human cancers, including head and neck squamous carcinoma (HNSCC). STAT3 is rarely mutated in cancer and the (epi)genetic alterations that lead to STAT3 activation are incompletely understood. Here we used an unbiased approach to identify genomic and epigenomic changes associated with pSTAT3(Y705) expression using data generated by The Cancer Genome Atlas (TCGA).Methods and findingsMutation, mRNA expression, promoter methylation, and copy number alteration data were extracted from TCGA and examined in the context of pSTAT3(Y705) protein expression. mRNA expression levels of 1279 genes were found to be associated with pSTAT3(705) expression. Association of pSTAT3(Y705) expression with caspase-8 mRNA expression was validated by immunoblot analysis in HNSCC cells. Mutation, promoter hypermethylation, and copy number alteration of any gene were not significantly associated with increased pSTAT3(Y705) protein expression.ConclusionsThese cumulative results suggest that unbiased approaches may be useful in identifying the molecular underpinnings of oncogenic signaling, including STAT3 activation, in HNSCC. Larger datasets will likely be necessary to elucidate signaling consequences of infrequent alterations

    Liquid-liquid coexistence in the phase diagram of a fluid confined in fractal porous materials

    Full text link
    Multicanonical ensemble sampling simulations have been performed to calculate the phase diagram of a Lennard-Jones fluid embedded in a fractal random matrix generated through diffusion limited cluster aggregation. The study of the system at increasing size and constant porosity shows that the results are independent from the matrix realization but not from the size effects. A gas-liquid transition shifted with respect to bulk is found. On growing the size of the system on the high density side of the gas-liquid coexistence curve it appears a second coexistence region between two liquid phases. These two phases are characterized by a different behaviour of the local density inside the interconnected porous structure at the same temperature and chemical potential.Comment: 5 pages, 4 figures. To be published in Europhys. Letter

    The conditioning of medical gases with hot water humidifiers

    Get PDF
    During invasive mechanical ventilation due to the dryness of medical gases is necessary to provide an adequate level of conditioning. The hot water humidifiers (HWH) heat the water, thus allowing the water vapor to heat and humidify the medical gases. In the common HWH there is a contact between the medical gases and the sterile water, thus increasing the risk of patient’s colonization and infection. Recently to avoid the condensation in the inspiratory limb of the ventilator circuit, new heated ventilator circuits have been developed. In this in vitro study we evaluated the efficiency (absolute/relative humidity) of three HWH: (1) a common HWH without a heated ventilator circuit (MR 730, Fisher&Paykel, New Zeland), (2) the same HWH with a heated ventilator circuit (Mallinckrodt Dar, Italy) and (3) a new HWH (DAR HC 2000, Mallinkckrodt Dar, Italy) with a heated ventilator circuit in which the water vapor reaches the medical gases through a gorotex membrane, avoiding any direct contact between the water and gases. At a temperature of 35°C and 37°C the HWH and heated tube were evaluated. The absolute humidity (AH) and relative humidity (RH) were measured by a psychometric method. The minute ventilation, tidal volume respiratory rate and oxygen fraction were: 5.8 ± 0.1 l/min, 740 ± 258 ml, 7.5 ± 2.6 bpm and 100%, respectively. Ventilator P2 Use of a bougie during percutaneous tracheostom

    Modelling Magnetar Behaviour with 3D Magnetothermal Simulations

    Get PDF
    The observational properties of isolated NSs are shaped by their magnetic field and surface temperature. They evolve in a strongly coupled fashion, and modelling them is key in understanding the emission properties of NSs. Much effort was put in tackling this problem in the past but only recently a suitable 3D numerical framework was developed. We present a set of 3D simulations addressing both the long-Term evolution (≈ 104-106 yrs) and short-lived outbursts (â 1 yr). Not only a 3D approach allows one to test complex field geometries, but it is absolutely key to model magnetar outbursts, which observations associate to the appearance of small, inherently asymmetric hot regions. Even though the mechanism that triggers these phenomena is not completely understood, following the evolution of a localised heat injection in the crust serves as a model to study the unfolding of the event

    Three-dimensional Modeling of the Magnetothermal Evolution of Neutron Stars: Method and Test Cases

    Get PDF
    Neutron stars harbor extremely strong magnetic fields within their solid outer crust. The topology of this field strongly influences the surface temperature distribution and, hence, the star's observational properties. In this work, we present the first realistic simulations of the coupled crustal magnetothermal evolution of isolated neutron stars in three dimensions accounting for neutrino emission, obtained with the pseudo-spectral code parody. We investigate both the secular evolution, especially in connection with the onset of instabilities during the Hall phase, and the short-term evolution following episodes of localized energy injection. Simulations show that a resistive tearing instability develops in about a Hall time if the initial toroidal field exceeds ≈1015\approx {10}^{15} G. This leads to crustal failures because of the huge magnetic stresses coupled with the local temperature enhancement produced by dissipation. Localized heat deposition in the crust results in the appearance of hot spots on the star surface, which can exhibit a variety of patterns. Because the transport properties are strongly influenced by the magnetic field, the hot regions tend to drift away and get deformed following the magnetic field lines while cooling. The shapes obtained with our simulations are reminiscent of those recently derived from NICER X-ray observations of the millisecond pulsar PSR J0030+0451

    Therapeutic Insights from Genomic Studies of Head and Neck Squamous Cell Carcinomas

    Get PDF
    Large and comprehensive genomic surveys of head and neck squamous cell carcinomas are now greatly increasing our understanding of the diversity of this disease and the key genomic changes, which drive these tumors. The results from these studies are beginning to inform the introduction of novel therapies for patients with head and neck squamous cell cancers. Here, we review some of the key findings from recent genomic studies of head and neck cancers including the most comprehensive study to date from The Cancer Genome Atlas Network

    Regulation during the second year: Executive function and emotion regulation links to joint attention, temperament, and social vulnerability in a Latin American sample

    Get PDF
    © 2019 Gago Galvagno, De Grandis, Clerici, Mustaca, Miller and Elgier. Although a growing body of work has established developing regulatory abilities during the second year of life, more work is needed to better understand factors that influence this emerging control. The purpose of the present study was to examine regulation capacities in executive functions (i.e., EF or cognitive control) and emotion regulation (i.e., ER or control focused on modulating negative and sustaining positive emotions) in a Latin American sample, with a focus on how joint attention, social vulnerability, and temperament contribute to performance. Sixty Latin American dyads of mothers and children aged 18 to 24 months completed several EF tasks, a Still-Face Paradigm (SFP) to examine ER (Weinberg et al., 2008), and the Early Social Communication Scale to measure joint attention (Mundy et al., 2003). Parents completed the Early Childhood Behavior Questionnaire Very Short Form to measure temperament (ECBQ-VS, Putnam et al., 2010) and the Social Economic Level Scale (SES) from INDEC (2000). Results revealed the typical responses expected for toddlers of this age in these EF tasks and in the SFP. Also, we found associations between EF and ER and between non-verbal communication related to monitoring infants\u27 attention to objects (i.e., responding to joint attention) and initiation of pointing (e.g., pointing and showing of an object while the child alternates his gaze to an adult) with EF. Regarding social factors, family differences and type of housing contribute to regulation. For temperament, effortful control was associated with both regulatory capacities. Finally, only age predicted EF. These results suggest that many patterns regarding the development of these abilities are duplicated in the first months of life in a Latin American sample while further highlighting the importance of considering how the environment and the individual characteristics of infants may associate to these regulatory abilities, which is particularly relevant to developing public policies to promote their optimal development
    • …
    corecore