1,300 research outputs found

    Two phase galaxy formation: The Evolutionary Properties of Galaxies

    Get PDF
    We use our model for the formation and evolution of galaxies within a two-phase galaxy formation scenario, showing that the high-redshift domain typically supports the growth of spheroidal systems, whereas at low redshifts the predominant baryonic growth mechanism is quiescent and may therefore support the growth of a disc structure. Under this framework we investigate the evolving galaxy population by comparing key observations at both low and high-redshifts, finding generally good agreement. By analysing the evolutionary properties of this model, we are able to recreate several features of the evolving galaxy population with redshift, naturally reproducing number counts of massive star-forming galaxies at high redshifts, along with the galaxy scaling relations, star formation rate density and evolution of the stellar mass function. Building upon these encouraging agreements, we make model predictions that can be tested by future observations. In particular, we present the expected evolution to z=2 of the super-massive black hole mass function, and we show that the gas fraction in galaxies should decrease with increasing redshift in a mass, with more and more evolution going to higher and higher masses. Also, the characteristic transition mass from disc to bulge dominated system should decrease with increasing redshift.Comment: 15 pages, 11 figures. Version polished for publication in MNRA

    Phase-coherence threshold and vortex-glass state in diluted Josephson-junction arrays in a magnetic field

    Full text link
    We study numerically the interplay of phase coherence and vortex-glass state in two-dimensional Josephson-junction arrays with average rational values of flux quantum per plaquette ff and random dilution of junctions. For f=1/2f=1/2, we find evidence of a phase coherence threshold value xsx_s, below the percolation concentration of diluted junctions xpx_p, where the superconducting transition vanishes. For xs<x<xpx_s < x < x_p the array behaves as a zero-temperature vortex glass with nonzero linear resistance at finite temperatures. The zero-temperature critical currents are insensitive to variations in ff in the vortex glass region while they are strongly ff dependent in the phase coherent region.Comment: 6 pages, 4 figures, to appear in Phys. Rev.

    Nonlinear sliding friction of adsorbed overlayers on disordered substrates

    Full text link
    We study the response of an adsorbed monolayer on a disordered substrate under a driving force using Brownian molecular-dynamics simulation. We find that the sharp longitudinal and transverse depinning transitions with hysteresis still persist in the presence of weak disorder. However, the transitions are smeared out in the strong disorder limit. The theoretical results here provide a natural explanation for the recent data for the depinning transition of Kr films on gold substrate.Comment: 8 pages, 8 figs, to appear in Phys. Rev.

    Diluted Josephson-junction arrays in a magnetic field: phase coherence and vortex glass thresholds

    Get PDF
    The effects of random dilution of junctions on a two-dimensional Josephson-junction array in a magnetic field are considered. For rational values of the average flux quantum per plaquette ff, the superconducting transition temperature vanishes, for increasing dilution, at a critical value xS(f)x_S(f), while the vortex ordering remains stable up to xVL>xSx_{VL}>x_S, much below the value xpx_p corresponding to the geometric percolation threshold. For xVL<x<xp x_{VL}<x<x_p, the array behaves as a zero-temperature vortex-glass. Numerical results for f=1/2f=1/2 from defect energy calculations are presented which are consistent with this scenario.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Dynamical transitions and sliding friction of the phase-field-crystal model with pinning

    Get PDF
    We study the nonlinear driven response and sliding friction behavior of the phase-field-crystal (PFC) model with pinning including both thermal fluctuations and inertial effects. The model provides a continuous description of adsorbed layers on a substrate under the action of an external driving force at finite temperatures, allowing for both elastic and plastic deformations. We derive general stochastic dynamical equations for the particle and momentum densities including both thermal fluctuations and inertial effects. The resulting coupled equations for the PFC model are studied numerically. At sufficiently low temperatures we find that the velocity response of an initially pinned commensurate layer shows hysteresis with dynamical melting and freezing transitions for increasing and decreasing applied forces at different critical values. The main features of the nonlinear response in the PFC model are similar to the results obtained previously with molecular dynamics simulations of particle models for adsorbed layers.Comment: 7 pages, 8 figures, to appear in Physcial Review

    Equilibrium shape and dislocation nucleation in strained epitaxial nanoislands

    Full text link
    We study numerically the equilibrium shapes, shape transitions and dislocation nucleation of small strained epitaxial islands with a two-dimensional atomistic model, using simple interatomic pair potentials. We first map out the phase diagram for the equilibrium island shapes as a function of island size (up to N = 105 atoms) and lattice misfit with the substrate and show that nanoscopic islands have four generic equilibrium shapes, in contrast with predictions from the continuum theory of elasticity. For increasing substrate-adsorbate attraction, we find islands that form on top of a finite wetting layer as observed in Stranski-Krastanow growth. We also investigate energy barriers and transition paths for transitions between different shapes of the islands and for dislocation nucleation in initially coherent islands. In particular, we find that dislocations nucleate spontaneously at the edges of the adsorbate-substrate interface above a critical size or lattice misfit.Comment: 4 pages, 3 figures, uses wrapfig.sty and epsfig.st

    Model Energy Landscapes of Low-Temperature Fluids: Dipolar Hard Spheres

    Full text link
    An analytical model of non-Gaussian energy landscape of low-temperature fluids is developed based on the thermodynamics of the fluid of dipolar hard spheres. The entire excitation profile of the liquid, from the high temperatures to the point of ideal-glass transition, has been obtained from the Monte Carlo simulations. The fluid of dipolar hard spheres loses stability when reaching the point of ideal-glass transition transforming via a first-order transition into a columnar liquid phase of dipolar chains locally arranged in a body-centered tetragonal order.Comment: 4 pages, 3 figure

    Current-voltage scaling of a Josephson-junction array at irrational frustration

    Full text link
    Numerical simulations of the current-voltage characteristics of an ordered two-dimensional Josephson junction array at an irrational flux quantum per plaquette are presented. The results are consistent with an scaling analysis which assumes a zero temperature vortex glass transition. The thermal correlation length exponent characterizing this transition is found to be significantly different from the corresponding value for vortex-glass models in disordered two-dimensional superconductors. This leads to a current scale where nonlinearities appear in the current-voltage characteristics decreasing with temperature TT roughly as T2T^2 in contrast with the T3T^3 behavior expected for disordered models.Comment: RevTex 3.0, 12 pages with Latex figures, to appear in Phys. Rev. B 54, Rapid. Com
    corecore