2,161 research outputs found
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at âs=7 TeV
Bose-Einstein correlations of same-sign charged pions, produced in protonproton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected
by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the
form of an enhancement of pairs of like-sign charged pions with small four-momentum
difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source
is investigated, determining both the correlation radius and the chaoticity parameter. The
measured correlation radius is found to increase as a function of increasing charged-particle
multiplicity, while the chaoticity parameter is seen to decreas
Constraints on the unitarity triangle angle from Dalitz plot analysis of decays
The first study is presented of CP violation with an amplitude analysis of
the Dalitz plot of decays, with , and . The analysis is based on a data sample corresponding to
of collisions collected with the LHCb detector. No
significant CP violation effect is seen, and constraints are placed on the
angle of the unitarity triangle formed from elements of the
Cabibbo-Kobayashi-Maskawa quark mixing matrix. Hadronic parameters associated
with the decay are determined for the first time. These
measurements can be used to improve the sensitivity to of existing and
future studies of the decay.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-059.html;
updated to correct figure 9 (numerical results unchanged
Observation of two new baryon resonances
Two structures are observed close to the kinematic threshold in the mass spectrum in a sample of proton-proton collision data, corresponding
to an integrated luminosity of 3.0 fb recorded by the LHCb experiment.
In the quark model, two baryonic resonances with quark content are
expected in this mass region: the spin-parity and
states, denoted and .
Interpreting the structures as these resonances, we measure the mass
differences and the width of the heavier state to be
MeV,
MeV,
MeV, where the first and second
uncertainties are statistical and systematic, respectively. The width of the
lighter state is consistent with zero, and we place an upper limit of
MeV at 95% confidence level. Relative
production rates of these states are also reported.Comment: 17 pages, 2 figure
Measurement of the lifetime
Using a data set corresponding to an integrated luminosity of ,
collected by the LHCb experiment in collisions at centre-of-mass energies
of 7 and 8 TeV, the effective lifetime in the
decay mode, , is measured to be ps. Assuming
conservation, corresponds to the lifetime of the light
mass eigenstate. This is the first measurement of the effective
lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
Observation of the decay
The decay is observed in collision
data corresponding to an integrated luminosity of 3 fb recorded by the
LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first
observation of this decay channel, with a statistical significance of 15
standard deviations. The mass of the meson is measured to be
MeV/c. The branching fraction ratio
is measured to be 0.0115\,\pm\, 0.0012\, ^{+0.0005}_{-0.0009}.
In both cases, the first uncertainty is statistical and the second is
systematic. No evidence for non-resonant or decays is found.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-033.htm
A new algorithm for identifying the flavour of mesons at LHCb
A new algorithm for the determination of the initial flavour of
mesons is presented. The algorithm is based on two neural networks and exploits
the hadron production mechanism at a hadron collider. The first network is
trained to select charged kaons produced in association with the meson.
The second network combines the kaon charges to assign the flavour and
estimates the probability of a wrong assignment. The algorithm is calibrated
using data corresponding to an integrated luminosity of 3 fb collected
by the LHCb experiment in proton-proton collisions at 7 and 8 TeV
centre-of-mass energies. The calibration is performed in two ways: by resolving
the - flavour oscillations in
decays, and by analysing flavour-specific
decays. The tagging power measured in decays is found
to be \%, which is an
improvement of about 50\% compared to a similar algorithm previously used in
the LHCb experiment.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-056.htm
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+Ï+Ï- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bcâ(2S31)+ state reconstructed without the low-energy photon from the Bcâ(1S31)+âBc+Îł decay following Bcâ(2S31)+âBcâ(1S31)+Ï+Ï-. A second state is seen with a global (local) statistical significance of 2.2Ï (3.2Ï) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Study of charmonium production in b -hadron decays and first evidence for the decay Bs0
Using decays to Ï-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fbâ1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ⥠B(b â C X) Ă B(C â ÏÏ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of Ï mesons, ratios RC1C2 ⥠BC1 /BC2 are determined as RÏc0ηc(1S) = 0.147 ± 0.023 ± 0.011, RÏc1ηc(1S) =0.073 ± 0.016 ± 0.006, RÏc2ηc(1S) = 0.081 ± 0.013 ± 0.005,RÏc1 Ïc0 = 0.50 ± 0.11 ± 0.01, RÏc2 Ïc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and Ïc2(2P) states are obtained as RX(3872)Ïc1 < 0.34, RX(3915)Ïc0 < 0.12 andRÏc2(2P)Ïc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andÏc states. The branching fraction of the decay B0s â ÏÏÏ is measured for the first time, B(B0s â ÏÏÏ) = (2.15±0.54±0.28±0.21B)Ă10â6. Here the third uncertainty is due to the branching fraction of the decay B0s â ÏÏ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse Ï polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to ÏÏ and p p asB(ηc(1S)â ÏÏ)/B(ηc(1S)â p p) = 1.79 ± 0.14 ± 0.32
Study of J /Ï production in Jets
The production of J/Ï mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the J/Ï meson, z(J/Ï)âĄpT(J/Ï)/pT(jet), is measured using jets with pT(jet)>20 GeV in the pseudorapidity range 2.5<η(jet)<4.0. The observed z(J/Ï)distribution for J/Ï mesons produced in b-hadron decays is consistent with expectations. However, the results for prompt J/Ï production do not agree with predictions based on fixed-order nonrelativistic QCD. This is the first measurement of the pT fraction carried by prompt J/Ï mesons in jets at any experiment
- âŠ