4 research outputs found

    Advances in transcatheter mitral and tricuspid therapies

    Get PDF
    BACKGROUND: While rheumatic mitral stenosis has been effectively treated percutaneously for more than 20 years, mitral and tricuspid regurgitation treatment appear as a contemporary unmet need. The advent of transcatheter therapies offer new treatment options to often elderly and frail patients at high risk for open surgery. We aimed at providing an updated review of fast-growing domain of transcatheter mitral and tricuspid technology. MAIN BODY: We reviewed the existing literature on mitral and tricuspid transcatheter therapies. Mitraclip is becoming an established therapy for secondary mitral regurgitation in selected patients with disproportionately severe regurgitation associated with moderate left ventricle dysfunction. Evidence is less convincing for primary mitral regurgitation. Transcatheter mitral valve replacement is a promising emerging alternative to transcatheter repair, for secondary as well as primary mitral regurgitation. But further development is needed to improve delivery. Transcatheter tricuspid intervention arrives late after similar technologies have been developed for aortic and mitral valves and is currently at its infancy. This is likely due in part to previously under-recognized impact of tricuspid regurgitation on patient outcomes. Edge-to-edge repair is the most advanced transcatheter solution in development. Data on tricuspid annuloplasty and replacement is limited, and more research is warranted. CONCLUSION: The future appears bright for transcatheter mitral therapies, albeit their place in clinical practice is yet to be clearly defined. Tricuspid transcatheter therapies might address the unmet need of tricuspid regurgitation treatment

    Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies

    Get PDF
    Objectives: The purpose of this document is to make the output of the International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT) Standardization and Validation available to medical and scientific communities, through a peer-reviewed publication, in the interest of improving the diagnosis and treatment of patients with atherosclerosis, including coronary artery disease. Background: Intravascular optical coherence tomography (IVOCT) is a catheter-based modality that acquires images at a resolution of ∼10 μm, enabling visualization of blood vessel wall microstructure in vivo at an unprecedented level of detail. IVOCT devices are now commercially available worldwide, there is an active user base, and the interest in using this technology is growing. Incorporation of IVOCT in research and daily clinical practice can be facilitated by the development of uniform terminology and consensus-based standards on use of the technology, interpretation of the images, and reporting of IVOCT results. Methods: The IWG-IVOCT, comprising more than 260 academic and industry members from Asia, Europe, and the United States, formed in 2008 and convened on the topic of IVOCT standardization through a series of 9 national and international meetings. Results: Knowledge and recommendations from this group on key areas within the IVOCT field were assembled to generate this consensus document, authored by the Writing Committee, composed of academicians who have participated in meetings and/or writing of the text. Conclusions: This document may be broadly used as a standard reference regarding the current state of the IVOCT imaging modality, intended for researchers and clinicians who use IVOCT and analyze IVOCT data

    Plaque sealing and passivation with a mechanical self-expanding low outward force nitinol vShield device for the treatment of IVUS and OCT-derived thin cap fibroatheromas (TCFAs) in native coronary arteries: Report of the pilot study vShield Evaluated at Cardiac hospital in Rotterdam for Investigation and Treatment of TCFA (SECRITT)

    No full text
    Aims: The aim of the pilot SECRITT trial was to evaluate the safety and feasibility of sealing the high risk IVUS and optical coherence tomography-derived thin cap fibroatheroma (TCFA), with a dedicated nitinol self-expanding vShield device. Methods and results: After screening with angiography, fractional flow reserve (FFR), intravascular ultrasound virtual histology (IVUS-VH) and optical coherence tomography (OCT), 23 patients met enrolment criteria (presence of non-obstructive VH-derived TCFA lesion with thin cap on OCT) and were randomised to vShield (n=13) versus medical therapy (n=10). In the shielded group, baseline percent diameter stenosis was 33.2±13.5%, FFR was 0.93±0.06. At six-month follow-up in shielded patients percent diameter stenosis further decreased to 18.7±16.9% and FFR remained the same 0.93±0.05. Average late loss was 0.24±0.13 mm. Average baseline fibrous cap thickness was 48±12 μm. After shield placement at six-month follow-up neo-cap formation was observed with average cap thickness of 201±168 μm. There were no dissections after shield placement and no plaque ruptures. In addition, mean stent area of 8.76±2.16 mm2 increased to 9.45±2.30 mm2, that is by 9% at six-month follow-up. The number of malapposed struts decreased from 10.7% to 7.6% and the number of uncovered struts at six months was 8.1%. There were no device-related major adverse cardiovascular events (MACE) events at six-month follow-up. Conclusions: High risk plaque passivation and sealing with a vShield self-expanding nitinol device appears feasible and safe. A long-term larger randomised study with streamlined screening criteria is needed to evaluate the effic

    Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial

    No full text
    corecore