10 research outputs found

    Resonators coupled to voltage-biased Josephson junctions: From linear response to strongly driven nonlinear oscillations

    Full text link
    Motivated by recent experiments, where a voltage biased Josephson junction is placed in series with a resonator, the classical dynamics of the circuit is studied in various domains of parameter space. This problem can be mapped onto the dissipative motion of a single degree of freedom in a nonlinear time-dependent potential, where in contrast to conventional settings the nonlinearity appears in the driving while the static potential is purely harmonic. For long times the system approaches steady states which are analyzed in the underdamped regime over the full range of driving parameters including the fundamental resonance as well as higher and sub-harmonics. Observables such as the dc-Josephson current and the radiated microwave power give direct information about the underlying dynamics covering phenomena as bifurcations, irregular motion, up- and down conversion. Due to their tunability, present and future set-ups provide versatile platforms to explore the changeover from linear response to strongly nonlinear behavior in driven dissipative systems under well defined conditions.Comment: 12 pages, 11 figure

    Measurement scheme for the Lamb shift in a superconducting circuit with broadband environment

    Full text link
    Motivated by recent experiments on quantum mechanical charge pumping in a Cooper pair sluice, we present a measurement scheme for observing shifts of transition frequencies in two-level quantum systems induced by broadband environmental fluctuations. In contrast to quantum optical and related set-ups based on cavities, the impact of a thermal phase reservoir is considered. A thorough analysis of Lamb and Stark shifts within weak-coupling master equations is complemented by non-perturbative results for the model of an exactly solvable harmonic system. The experimental protocol to measure the Lamb shift in experimentally feasible superconducting circuits is analysed in detail and supported by numerical simulations.Comment: 8 pages, 4 figure

    Antwort Gramich

    No full text

    Epitaxial Pb on InAs nanowires for quantum devices

    No full text
    Semiconductor-superconductor hybrids are used for realizing complex quantum phenomena but are limited in the accessible magnetic field and temperature range. Now, hybrid devices made from InAs nanowires and epitaxially matched, single-crystal, atomically flat Pb films present superior characteristics, doubling the available parameter space. Semiconductor-superconductor hybrids are widely used to realize complex quantum phenomena, such as topological superconductivity and spins coupled to Cooper pairs. Accessing new, exotic regimes at high magnetic fields and increasing operating temperatures beyond the state-of-the-art requires new, epitaxially matched semiconductor-superconductor materials. One challenge is the generation of favourable conditions for heterostructural formation between materials with the desired properties. Here we harness an increased knowledge of metal-on-semiconductor growth to develop InAs nanowires with epitaxially matched, single-crystal, atomically flat Pb films with no axial grain boundaries. These highly ordered heterostructures have a critical temperature of 7 K and a superconducting gap of 1.25 meV, which remains hard at 8.5 T, and therefore they offer a parameter space more than twice as large as those of alternative semiconductor-superconductor hybrids. Additionally, InAs/Pb island devices exhibit magnetic field-driven transitions from a Cooper pair to single-electron charging, a prerequisite for use in topological quantum computation. Semiconductor-Pb hybrids potentially enable access to entirely new regimes for a number of different quantum systems
    corecore