3 research outputs found
Fluid balance and urine volume are independent predictors of mortality in acute kidney injury
Introduction: In ICUs, both fluid overload and oliguria are common complications associated with increased mortality among critically ill patients, particularly in acute kidney injury (AKI). Although fluid overload is an expected complication of oliguria, it remains unclear whether their effects on mortality are independent of each other. The aim of this study is to evaluate the impact of both fluid balance and urine volume on outcomes and determine whether they behave as independent predictors of mortality in adult ICU patients with AKI. Methods: We performed a secondary analysis of data from a multicenter, prospective cohort study in 10 Italian ICUs. AKI was defined by renal sequential organ failure assessment (SOFA) score (creatinine >3.5 mg/dL or urine output (UO) <500 mL/d). Oliguria was defined as a UO <500 mL/d. Mean fluid balance (MFB) and mean urine volume (MUV) were calculated as the arithmetic mean of all daily values. Use of diuretics was noted daily. To assess the impact of MFB and MUV on mortality of AKI patients, multivariate analysis was performed by Cox regression. Results: Of the 601 included patients, 132 had AKI during their ICU stay and the mortality in this group was 50%. Non-surviving AKI patients had higher MFB (1.31 +/- 1.24 versus 0.17 +/- 0.72 L/day; P < 0.001) and lower MUV (1.28 +/- 0.90 versus 2.35 +/- 0.98 L/day; P < 0.001) as compared to survivors. In the multivariate analysis, MFB (adjusted hazard ratio (HR) 1.67 per L/day, 95% CI 1.33 to 2.09; < 0.001) and MUV (adjusted HR 0.47 per L/day, 95% CI 0.33 to 0.67; < 0.001) remained independent risk factors for 28-day mortality after adjustment for age, gender, diabetes, hypertension, diuretic use, non-renal SOFA and sepsis. Diuretic use was associated with better survival in this population (adjusted HR 0.25, 95% CI 0.12 to 0.52; < 0.001). Conclusions: In this multicenter ICU study, a higher fluid balance and a lower urine volume were both important factors associated with 28-day mortality of AKI patients
Utilization of Small Changes in Serum Creatinine with Clinical Risk Factors to Assess the Risk of AKI in Critically lll Adults
BACKGROUND AND OBJECTIVES:
Disease biomarkers require appropriate clinical context to be used effectively. Combining clinical risk factors, in addition to small changes in serum creatinine, has been proposed to improve the assessment of AKI. This notion was developed in order to identify the risk of AKI early in a patient's clinical course. We set out to assess the performance of this combination approach.
DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS:
A secondary analysis of data from a prospective multicenter intensive care unit cohort study (September 2009 to April 2010) was performed. Patients at high risk using this combination approach were defined as an early increase in serum creatinine of 0.1-0.4 mg/dl, depending on number of clinical factors predisposing to AKI. AKI was defined and staged using the Acute Kidney Injury Network criteria. The primary outcome was evolution to severe AKI (Acute Kidney Injury Network stages 2 and 3) within 7 days in the intensive care unit.
RESULTS:
Of 506 patients, 214 (42.2%) patients had early creatinine elevation and were deemed at high risk for AKI. This group was more likely to subsequently develop the primary endpoint (16.4% versus 1.0% [not at high risk], P<0.001). The sensitivity of this grouping for severe AKI was 92%, the specificity was 62%, the positive predictive value was 16%, and the negative predictive value was 99%. After adjustment for Sequential Organ Failure Assessment score, serum creatinine, and hazard tier for AKI, early creatinine elevation remained an independent predictor for severe AKI (adjusted relative risk, 12.86; 95% confidence interval, 3.52 to 46.97). Addition of early creatinine elevation to the best clinical model improved prediction of the primary outcome (area under the receiver operating characteristic curve increased from 0.75 to 0.83, P<0.001).
CONCLUSION:
Critically ill patients at high AKI risk, based on the combination of clinical factors and early creatinine elevation, are significantly more likely to develop severe AKI. As initially hypothesized, the high-risk combination group methodology can be used to identify patients at low risk for severe AKI in whom AKI biomarker testing may be expected to have low yield. The high risk combination group methodology could potentially allow clinicians to optimize biomarker use
Extracorporeal life support in COVID‐19‐related acute respiratory distress syndrome: A EuroELSO international survey
International audienceExtracorporeal life support (ECLS) is a means to support patients with acute respiratory failure. Initially, recommendations to treat severe cases of pandemic coronavirus disease 2019 (COVID-19) with ECLS have been restrained. In the meantime, ECLS has been shown to produce similar outcomes in patients with severe COVID-19 compared to existing data on ARDS mortality. We performed an international email survey to assess how ECLS providers worldwide have previously used ECLS during the treatment of critically ill patients with COVID-19. A questionnaire with 45 questions (covering, e.g., indication, technical aspects, benefit, and reasons for treatment discontinuation), mostly multiple choice, was distributed by email to ECLS centers. The survey was approved by the European branch of the Extracorporeal Life Support Organization (ELSO); 276 ECMO professionals from 98 centers in 30 different countries on four continents reported that they employed ECMO for very severe COVID-19 cases, mostly in veno-venous configuration (87%). The most common reason to establish ECLS was isolated hypoxemic respiratory failure (50%), followed by a combination of hypoxemia and hypercapnia (39%). Only a small fraction of patients required veno-arterial cannulation due to heart failure (3%). Time on ECLS varied between less than 2 and more than 4 weeks. The main reason to discontinue ECLS treatment prior to patient's recovery was lack of clinical improvement (53%), followed by major bleeding, mostly intracranially (13%). Only 4% of respondents reported that triage situations, lack of staff or lack of oxygenators, were responsible for discontinuation of ECLS support. Most ECLS physicians (51%, IQR 30%) agreed that patients with COVID-19-induced ARDS (CARDS) benefitted from ECLS. Overall mortality of COVID-19 patients on ECLS was estimated to be about 55%. ECLS has been utilized successfully during the COVID-19 pandemic to stabilize CARDS patients in hypoxemic or hypercapnic lung failure. Age and multimorbidity limited the use of ECLS. Triage situations were rarely a concern. ECLS providers stated that patients with severe COVID-19 benefitted from ECLS