14 research outputs found

    Recognition but no repair of abasic site in single-stranded DNA by human ribosomal uS3 protein residing within intact 40S subunit

    Get PDF
    Isolated human ribosomal protein uS3 has extra-ribosomal functions including those related to base excision DNA repair, e.g. AP lyase activity that nicks double-stranded (ds) DNA 3' to the abasic (AP) site. However, the ability of uS3 residing within ribosome to recognize and cleave damaged DNA has never been addressed. Here, we compare interactions of single-stranded (ss) DNA and dsDNA bearing AP site with human ribosome-bound uS3 and with the isolated protein, whose interactions with ssDNA were not yet studied. The AP lyase activity of free uS3 was much higher with ssDNA than with dsDNA, whereas ribosome-bound uS3 was completely deprived of this activity. Nevertheless, an exposed peptide of ribosome-bound uS3 located far away from the putative catalytic center previously suggested for isolated uS3 cross-linked to full-length uncleaved ssDNA, but not to dsDNA. In contrast, free uS3 cross-linked mainly to the 5'-part of the damaged DNA strand after its cleavage at the AP site. ChIP-seq analysis showed preferential uS3 binding to nucleolus-associated chromatin domains. We conclude that free and ribosome-bound uS3 proteins interact with AP sites differently, exhibiting their non-translational functions in DNA repair in and around the nucleolus and in regulation of DNA damage response in looped DNA structures, respectively

    Molecular environment of the IIId subdomain of the IRES element of hepatitits C virus RNA on the human 40S ribosomal subunit

    No full text
    The molecular environment of the key subdomain IIId of the internal ribosome entry site (IRES) element of hepatitis C virus (HCV) RNA in the binary complex with the human 40S ribosomal subunit was studied. To this end, HCV IRES derivatives bearing perfluorophenylazido groups activatable by mild UV at nucleotides G263 or A275 in the subdomain IIId stem were used. They were prepared by the complementary addressed modification of the corresponding RNA transcript with alkylating oligodeoxyribonucleotide derivatives. None of the RNA derivatives were shown to be crosslinked to the 18S rRNA. It was found that the photoreactive groups of the IRES G263 and A275 nucleotides are crosslinked to ribosomal proteins S3a, S14, and S16. For the IRES derivative with the photoreactive group in nucleotide G263, the degree of modification of proteins S14 and S16 was greater than that of S3a, whereas the derivative containing the same photoreactive group in nucleotide A275 was mainly crosslinked to proteins S3a and S14. An analysis of the data led to the conclusion that in the binary complex of HCV IRES elements with the small subunit of the 80S ribosome, its subdomain IIId stem is located on the solvent side of the subunit between the head and the body next to the "beak" near the exit of mRNA from the ribosome

    Protein S3 fragments neighboring mRNA during elongation and termination of translation on the human ribosome

    No full text
    Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site bound codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5′-termini that could predetermine the position of the tRNAPhe on the ribosome by the P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3′ of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide—induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2–217) and/or in the C-terminal fragment 190–236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1

    Molecular contacts of ribose-phosphate backbone of mRNA with human ribosome

    No full text
    In this work, intimate contacts of riboses of mRNA stretch from nucleotides in positions +3 to +12 with respect to the first nucleotide of the P site codon were studied using cross-linking of short mRNA analogs with oxidized 3'-terminal riboses bound to human ribosomes in the complexes stabilized by codon-anticodon interactions and in the binary complexes. It was shown that in all types of complexes cross-links of the mRNA analogs to ribosomal protein (rp) uS3 occur and the yield of these cross-links does not depend on the presence of tRNA and on sequences of the mRNA analogs. Site of the mRNA analogs cross-linking in rp uS3 was mapped to the peptide in positions 55-64 that is located away from the mRNA binding site. Additionally, in complexes with P site-bound tRNA, riboses of mRNA nucleotides in positions +4 to +7 cross-linked to the C-terminal tail of rp uS19 displaying a contact specific to the decoding site of the mammalian ribosome, and tRNA bound at the A site completely blocked this cross-linking. Remarkably, rps uS3 and uS19 were also able to cross-link to the fragment of HCV IRES containing unstructured 3'-terminal part restricted by the AUGC tetraplet with oxidized 3'-terminal ribose. However, no cross-linking to rp uS3 was observed in the 48S preinitiation complex assembled in reticulocyte lysate with this HCV IRES derivative. The results obtained show an ability of rp uS3 to interact with single-stranded RNAs. Possible roles of rp uS3 region 55-64 in the functioning of ribosomes are discussed
    corecore