94 research outputs found

    Bringing Molecules Back into Molecular Evolution

    Get PDF
    Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events

    Celiprolol double-peak occurrence and gastric motility: Nonlinear mixed effects modeling of bioavailability data obtained in dogs

    Full text link
    Investigation of the underlying mechanism leading to inter- and intrasubject variations in the plasma concentration-time profiles of drugs (1) can considerably benefit rational drug therapy. The significant effect of gastric emptying on the rate and extent of celiprolol absorption and its role with respect to double-peak formation was demonstrated in the present study. In four dogs racemic celiprolol was dosed perorally in a crossover design during four different phases of the fasted-state gastric cycle and gastric motility was recorded simultaneously using a manometric measurement system. Intravenous doses were also given to obtain disposition and bioavailability parameters. The blood samples were assayed by a stereoselective HPLC method (2). The time to onset of the active phase of the gastric cycle showed an excellent correlation with the time to celiprolol peak concentration. Furthermore, bioavailability was increased when celiprolol was administered during the active phase. Double peaks were observed when the first active phase was relatively short, suggesting that a portion of the drug remained in the stomach until the next active phase. Population pharmacokinetic modeling of the data with a two-compartment open model with two lag times incorporating the motility data confirmed the effect of time to gastric empyting on the variability of the oral pharmacokinetics of celiprolol. The fasted-state motility phases determine the rate and extent of celiprolol absorption and influence the occurrence of double peaks. Peak plasma levels of celiprolol exhibit less variability if lag times, and therefore gastric emptying times, are taken into consideration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45049/1/10928_2006_Article_BF02354285.pd

    The right dose for every patient: a key step for precision medicine

    No full text

    Supernumerary premolar teeth in siblings.

    No full text
    • …
    corecore