9,222 research outputs found
The Constitution, the Legislature, and Unfair Surprise: Toward a Reliance-Based Approach to the Contract Clause
This Note argues that the Court should return to a reliance-based approach to Contract Clause challenges, fashioned loosely along the same lines as the HRID. Although it does not advocate that the Court revivify the rules created by the early decisions, the Note proposes that the Court look to the private parties\u27 expectations and, more specifically, to the reasonableness of those expectations in deciding the clause\u27s applicability to a particular case. Part I provides a brief history of the Contract Clause and its development. This Part follows the clause from the Constitutional Convention through the 1980s to illustrate the Court\u27s departure over time from the original meaning of the clause. Part II discusses the heavily regulated industry doctrine and demonstrates how it represents a return to a focus on party expectations. Having set forth the theoretical underpinnings of the heavily regulated industry doctrine, this Note in Part III extends the doctrine\u27s logic to create a modified reliance model for applying the Contract Clause. The Part argues that the reasonableness of a party\u27s expectations as to the validity or enforceability of her contracts varies according to the amount of previous legislation in an area, as well as the publicness of the party\u27s transactions. This Note concludes that this modified reliance approach has several advantages over the Court\u27s current test, including greater continuity with early Court precedent and better guidance both for private parties and legislatures
The search for novel analgesics: re-examining spinal cord circuits with new tools
In this perspective, we propose the absence of detailed information regarding spinal cord
circuits that process sensory information remains a major barrier to advancing analgesia.
We highlight recent advances showing that functionally discrete populations of neurons in
the spinal cord dorsal horn play distinct roles in processing sensory information. We then
discuss new molecular, electrophysiological, and optogenetic techniques that can be
employed to understand how dorsal horn circuits process tactile and nociceptive
information. We believe this information can drive the development of entirely new classes
of pharmacotherapies that target key elements in spinal circuits to selectively modify
sensory function and blunt pain
Dark Matter Searches with Astroparticle Data
The existence of dark matter (DM) was first noticed by Zwicky in the 1930s,
but its nature remains one of the great unsolved problems of physics. A variety
of observations indicate that it is non-baryonic and non-relativistic. One of
the preferred candidates for non-baryonic DM is a weakly interacting massive
particle (WIMP) that in most models is stable. WIMP self-annihilation can
produce cosmic rays, gamma rays, and other particles with signatures that may
be detectable. Hints of anomalous cosmic-ray spectra found by recent
experiments, such as PAMELA, have motivated interesting interpretations in
terms of DM annihilation and/or decay. However, these signatures also have
standard astrophysical interpretations, so additional evidence is needed in
order to make a case for detection of DM annihilation or decay. Searches by the
Fermi Large Area Telescope for gamma-ray signals from clumps, nearby dwarf
spheroidal galaxies, and galaxy clusters have also been performed, along with
measurements of the diffuse Galactic and extragalactic gamma-ray emission. In
addition, imaging atmospheric Cherenkov telescopes like HESS, MAGIC, and
VERITAS have reported on searches for gamma-ray emission from dwarf galaxies.
In this review, we examine the status of searches for particle DM by these
instruments and discuss the interpretations and resulting DM limits.Comment: Solicited review article to appear in Annual Reviews of Astronomy and
Astrophysics. 52 pages, 10 figures (higher resolution figures will appear in
the journal article
A zinc transporter gene required for development of the nervous system.
The essentiality of zinc for normal brain development is well established. It has been suggested that primary and secondary zinc deficiencies can contribute to the occurrence of numerous human birth defects, including many involving the central nervous system. In a recent study, we searched for zinc transporter genes that were critical for neurodevelopment. We confirmed that ZIP12 is a zinc transporter encoded by the gene slc39a12 that is highly expressed in the central nervous systems of human, mouse, and frog (Xenopus tropicalis).Using loss-of-function methods, we determined that ZIP12 is required for neuronal differentiation and neurite outgrowth and necessary for neurulation and embryonic viability. These results highlight an essential need for zinc regulation during embryogenesis and nervous system development. We suggest that slc39a12 is a candidate gene for inherited neurodevelopmental defects in humans
Investigation of generic hub fairing and pylon shapes to reduce hub drag
Reported are investigations of fairing configurations pointed toward substantially reducing hub drag. Experimental investigations have shown the importance of hub-fairing camber, lower-surface curvature, and relative size of the drag. The significance of pylon and hub fairings in combination have also been shown. Model test data presented here documented these findings, and also showed the effect of gaps and hub-fairing inclination angle on drag. From a drag standpoint, the best hub fairing had a circular arc, upper-surface curvature, a flat bottom surface, and 8.75% camber
Systematic derivation of a rotationally covariant extension of the 2-dimensional Newell-Whitehead-Segel equation
An extension of the Newell-Whitehead-Segel amplitude equation covariant under
abritrary rotations is derived systematically by the renormalization group
method.Comment: 8 pages, to appear in Phys. Rev. Letters, March 18, 199
Casimir Effects in Renormalizable Quantum Field Theories
We review the framework we and our collaborators have developed for the study
of one-loop quantum corrections to extended field configurations in
renormalizable quantum field theories. We work in the continuum, transforming
the standard Casimir sum over modes into a sum over bound states and an
integral over scattering states weighted by the density of states. We express
the density of states in terms of phase shifts, allowing us to extract
divergences by identifying Born approximations to the phase shifts with low
order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are
canceled against standard counterterms. Thus regulated, the Casimir sum is
highly convergent and amenable to numerical computation. Our methods have
numerous applications to the theory of solitons, membranes, and quantum field
theories in strong external fields or subject to boundary conditions.Comment: 27 pp., 11 EPS figures, LaTeX using ijmpa1.sty; email correspondence
to R.L. Jaffe ; based on talks presented by the authors at
the 5th workshop `QFTEX', Leipzig, September 200
Missouri bobwhite quail habitat appraisal guide : assessing your farm's potential for bobwhites (2008)
New 1/05 ; Revised 4/08/XM
Floquet Analysis of Atom Optics Tunneling Experiments
Dynamical tunneling has been observed in atom optics experiments by two
groups. We show that the experimental results are extremely well described by
time-periodic Hamiltonians with momentum quantized in units of the atomic
recoil. The observed tunneling has a well defined period when only two Floquet
states dominate the dynamics. Beat frequencies are observed when three Floquet
states dominate. We find frequencies which match those observed in both
experiments. The dynamical origin of the dominant Floquet states is identified.Comment: Accepted in Physical Review
- …