1,869 research outputs found
Factors associated with the suppressiveness of sugarcane soils to plant-parasitic nematodes
Observations in three Australian sugarcane fields suggested that the soil just under the trash blanket (the covering of crop residue that remains on the soil surface after crops are harvested) was suppressive to plant-parasitic nematodes. Roots were concentrated in this upper layer of soil but plant-parasitic nematode populations were relatively low and roots showed few signs of nematode damage. Root biomass was much lower 15 cm further down the soil profile, where root health was poor and populations of plant-parasitic nematodes were 3-5 times higher than near the soil surface. A bioassay in which Radopholus similis (a nematode that does not occur in sugarcane soils) was inoculated into heat-sterilized and untreated soils, confirmed that biological factors were limiting nematode populations in some of the soils, with soil from 0-2 cm much more suppressive than soil from 15-17 cm. Surface soil from one site was highly suppressive, as only 16% of R. similis recoverable from heated soil were retrieved from this soil after 8 days. Numerous soil chemical, biochemical, and biological properties were measured, and non-linear regression analysis identified two major groups of factors that were significantly associated with suppressiveness. One group reflected the amount of organic matter in soil (total C, total N, and labile C) and the other was associated with the size of the free-living nematode community (total numbers of free-living nematodes, and numbers of plant associates, bacterial feeders, fungal feeders, and carnivores). These results suggested that suppressiveness was biologically mediated and was sustained by C inputs from crop residues and roots. Since nematode-trapping fungi in the test soils could not be quantified using traditional dilution plating methods, their possible role as suppressive agents was assessed by generating TRFLP profiles with Orbiliales-specific primers, and by sequencing cloned PCR products. Although the molecular data were obtained from a limited number of samples, the level of suppression was significantly correlated to the number of Orbiliales clone groups and was also related to the number of Orbiliales species and TRFs, suggesting that this group of fungi may have been one of the suppressive factors operating in the test soils
Bimodule structure in the periodic gl(1|1) spin chain
This paper is second in a series devoted to the study of periodic super-spin
chains. In our first paper at 2011, we have studied the symmetry algebra of the
periodic gl(1|1) spin chain. In technical terms, this spin chain is built out
of the alternating product of the gl(1|1) fundamental representation and its
dual. The local energy densities - the nearest neighbor Heisenberg-like
couplings - provide a representation of the Jones Temperley Lieb (JTL) algebra.
The symmetry algebra is then the centralizer of JTL, and turns out to be
smaller than for the open chain, since it is now only a subalgebra of U_q sl(2)
at q=i, dubbed U_q^{odd} sl(2). A crucial step in our associative algebraic
approach to bulk logarithmic conformal field theory (LCFT) is then the analysis
of the spin chain as a bimodule over U_q^{odd} sl(2) and JTL. While our
ultimate goal is to use this bimodule to deduce properties of the LCFT in the
continuum limit, its derivation is sufficiently involved to be the sole subject
of this paper. We describe representation theory of the centralizer and then
use it to find a decomposition of the periodic gl(1|1) spin chain over JTL for
any even number N of tensorands and ultimately a corresponding bimodule
structure. Applications of our results to the analysis of the bulk LCFT will
then be discussed in the third part of this series.Comment: latex, 42 pp., 13 figures + 5 figures in color, many comments adde
Maternal Interleukin-6 concentration during pregnancy is associated with variation in frontolimbic white matter and cognitive development in early life
Maternal inflammation during pregnancy can alter the trajectory of fetal brain development and increase risk for offspring psychiatric disorders. However, the majority of relevant research to date has been conducted in animal models. Here, in humans, we focus on the structural connectivity of frontolimbic circuitry as it is both critical for socioemotional and cognitive development, and commonly altered in a range of psychiatric disorders associated with intrauterine inflammation. Specifically, we test the hypothesis that elevated maternal concentration of the proinflammatory cytokine interleukin-6 (IL-6) during pregnancy will be associated with variation in microstructural properties of this circuitry in the neonatal period and across the first year of life. Pregnant mothers were recruited in early pregnancy and maternal blood samples were obtained for assessment of maternal IL-6 concentrations in early (12.6 ± 2.8 weeks [S.D.]), mid (20.4 ± 1.5 weeks [S.D.]) and late (30.3 ± 1.3 weeks [S.D.]) gestation. Offspring brain MRI scans were acquired shortly after birth (N = 86, scan age = 3.7 ± 1.7 weeks [S.D.]) and again at 12-mo age (N = 32, scan age = 54.0 ± 3.1 weeks [S.D.]). Diffusion Tensor Imaging (DTI) was used to characterize fractional anisotropy (FA) along the left and right uncinate fasciculus (UF), representing the main frontolimbic fiber tract. In N = 30 of the infants with serial MRI data at birth and 12-mo age, cognitive and socioemotional developmental status was characterized using the Bayley Scales of Infant Development. All analyses tested for potentially confounding influences of household income, prepregnancy Body-Mass-Index, obstetric risk, smoking during pregnancy, and infant sex, and outcomes at 12-mo age were additionally adjusted for the quality of the postnatal caregiving environment. Maternal IL-6 concentration (averaged across pregnancy) was prospectively and inversely associated with FA (suggestive of reduced integrity under high inflammatory conditions) in the newborn offspring (bi-lateral, p < 0.01) in the central portion of the UF proximal to the amygdala. Furthermore, maternal IL-6 concentration was positively associated with rate of FA increase across the first year of life (bi-lateral, p < 0.05), resulting in a null association between maternal IL-6 and UF FA at 12-mo age. Maternal IL-6 was also inversely associated with offspring cognition at 12-mo age, and this association was mediated by FA growth across the first year of postnatal life. Findings from the current study support the premise that susceptibility for cognitive impairment and potentially psychiatric disorders may be affected in utero, and that maternal inflammation may constitute an intrauterine condition of particular importance in this context
Growth Kinetics in a Phase Field Model with Continuous Symmetry
We discuss the static and kinetic properties of a Ginzburg-Landau spherically
symmetric model recently introduced (Phys. Rev. Lett. {\bf 75}, 2176,
(1995)) in order to generalize the so called Phase field model of Langer. The
Hamiltonian contains two invariant fields and bilinearly
coupled. The order parameter field evolves according to a non conserved
dynamics, whereas the diffusive field follows a conserved dynamics. In the
limit we obtain an exact solution, which displays an interesting
kinetic behavior characterized by three different growth regimes. In the early
regime the system displays normal scaling and the average domain size grows as
, in the intermediate regime one observes a finite wavevector
instability, which is related to the Mullins-Sekerka instability; finally, in
the late stage the structure function has a multiscaling behavior, while the
domain size grows as .Comment: 9 pages RevTeX, 9 figures included, files packed with uufiles to
appear on Phy. Rev.
Neonatal brain volume as a marker of differential susceptibility to parenting quality and its association with neurodevelopment across early childhood
Parenting quality is associated with child cognitive and executive functions (EF), which are important predictors of social and academic development. However, children vary in their susceptibility to parenting behaviors, and the neurobiological underpinnings of this susceptibility are poorly understood. In a prospective longitudinal study, we examined whether neonatal total brain volume (TBV) and subregions of interest (i.e., hippocampus (HC) and anterior cingulate gyrus (ACG)) moderate the association between maternal sensitivity and cognitive/EF development across early childhood. Neonates underwent a brain magnetic resonance imaging scan. Their cognitive performance and EF was characterized at 2.0 ± 0.1 years (N = 53) and at 4.9 ± 0.8 years (N = 36) of age. Maternal sensitivity was coded based on observation of a standardized play situation at 6-mo postpartum. Neonatal TBV moderated the association between maternal sensitivity and 2-year working memory as well as all 5-year cognitive outcomes, suggesting that the positive association between maternal sensitivity and child cognition was observed only among children with large or average but not small TBV as neonates. Similar patterns were observed for TBV-corrected HC and ACG volumes. The findings suggest that larger neonatal TBV, HC and ACG may underlie susceptibility to the environment and affect the degree to which parenting quality shapes long-term cognitive development
How Ottawa Spends, 2018-2019: Next?
How Ottawa Spends is the annual review of the federal government’s spending and public policy by the Carleton University School of Public Policy and Administration
Bounds from Primordial Black Holes with a Near Critical Collapse Initial Mass Function
Recent numerical evidence suggests that a mass spectrum of primordial black
holes (PBHs) is produced as a consequence of near critical gravitational
collapse. Assuming that these holes formed from the initial density
perturbations seeded by inflation, we calculate model independent upper bounds
on the mass variance at the reheating temperature by requiring the mass density
not exceed the critical density and the photon emission not exceed current
diffuse gamma-ray measurements. We then translate these results into bounds on
the spectral index n by utilizing the COBE data to normalize the mass variance
at large scales, assuming a constant power law, then scaling this result to the
reheating temperature. We find that our bounds on n differ substantially
(\delta n > 0.05) from those calculated using initial mass functions derived
under the assumption that the black hole mass is proportional to the horizon
mass at the collapse epoch. We also find a change in the shape of the diffuse
gamma-ray spectrum which results from the Hawking radiation. Finally, we study
the impact of a nonzero cosmological constant and find that the bounds on n are
strengthened considerably if the universe is indeed vacuum-energy dominated
today.Comment: 24 pages, REVTeX, 5 figures; minor typos fixed, two refs added,
version to be published in PR
Associative algebraic approach to logarithmic CFT in the bulk: the continuum limit of the gl(1|1) periodic spin chain, Howe duality and the interchiral algebra
We develop in this paper the principles of an associative algebraic approach
to bulk logarithmic conformal field theories (LCFTs). We concentrate on the
closed spin-chain and its continuum limit - the symplectic
fermions theory - and rely on two technical companion papers, "Continuum limit
and symmetries of the periodic gl(1|1) spin chain" [Nucl. Phys. B 871 (2013)
245-288] and "Bimodule structure in the periodic gl(1|1) spin chain" [Nucl.
Phys. B 871 (2013) 289-329]. Our main result is that the algebra of local
Hamiltonians, the Jones-Temperley-Lieb algebra JTL_N, goes over in the
continuum limit to a bigger algebra than the product of the left and right
Virasoro algebras. This algebra, S - which we call interchiral, mixes the left
and right moving sectors, and is generated, in the symplectic fermions case, by
the additional field , with
a symmetric form and conformal weights (1,1). We discuss in details
how the Hilbert space of the LCFT decomposes onto representations of this
algebra, and how this decomposition is related with properties of the finite
spin-chain. We show that there is a complete correspondence between algebraic
properties of finite periodic spin chains and the continuum limit. An important
technical aspect of our analysis involves the fundamental new observation that
the action of JTL_N in the spin chain is in fact isomorphic to an
enveloping algebra of a certain Lie algebra, itself a non semi-simple version
of . The semi-simple part of JTL_N is represented by ,
providing a beautiful example of a classical Howe duality, for which we have a
non semi-simple version in the full JTL image represented in the spin-chain. On
the continuum side, simple modules over the interchiral algebra S are
identified with "fundamental" representations of .Comment: 69 pp., 10 figs, v2: the paper has been substantially modified - new
proofs, new refs, new App C with inductive limits construction, et
- …