2,106 research outputs found

    A Database of Cepheid Distance Moduli and TRGB, GCLF, PNLF and SBF Data Useful for Distance Determinations

    Full text link
    We present a compilation of Cepheid distance moduli and data for four secondary distance indicators that employ stars in the old stellar populations: the planetary nebula luminosity function (PNLF), the globular cluster luminosity function (GCLF), the tip of the red giant branch (TRGB), and the surface brightness fluctuation (SBF) method. The database includes all data published as of July 15, 1999. The main strength of this compilation resides in all data being on a consistent and homogeneous system: all Cepheid distances are derived using the same calibration of the period-luminosity relation, the treatment of errors is consistent for all indicators, measurements which are not considered reliable are excluded. As such, the database is ideal for inter-comparing any of the distance indicators considered, or for deriving a Cepheid calibration to any secondary distance indicator. Specifically, the database includes: 1) Cepheid distances, extinctions and metallicities; 2) apparent magnitudes of the PNLF cutoff; 3) apparent magnitudes and colors of the turnover of the GCLF (both in the V- and B-bands); 4) apparent magnitudes of the TRGB (in the I-band) and V-I colors at and 0.5 magnitudes fainter than the TRGB; 5) apparent surface brightness fluctuation magnitudes I, K', K_short, and using the F814W filter with the HST/WFPC2. In addition, for every galaxy in the database we give reddening estimates from DIRBE/IRAS as well as HI maps, J2000 coordinates, Hubble and T-type morphological classification, apparent total magnitude in B, and systemic velocity. (Abridged)Comment: Accepted for publication in the Astrophysical Journal Supplement Series. Because of space limitations, the figures included are low resolution bitmap images. Original figures can be found at http://www.astro.ucla.edu/~laura/pub.ht

    The Hubble Space Telescope Extragalactic Distance Scale Key Project XXIII. The Discovery of Cepheids In NGC 3319

    Get PDF
    The distance to NGC 3319 has been determined from Cepheid variable stars as part of the Hubble Space Telescope Key Project on the Extragalactic Distance Scale. Thirteen and four epochs of observations, using filters F555W (V) and F814W (I) respectively, were made with the Wide Field Planetary Camera 2. Thirty-three Cepheid variables between periods of 8 and 47 days were discovered. Adopting a Large Magellanic Cloud distance modulus of 18.50 +- 0.10 mag and extinction of E(V-I)=0.13 mag, a true reddening-corrected distance modulus (based on an analysis employing the ALLFRAME software package) of 30.78 +- 0.14 (random) +- 0.10 (systematic) mag and the extinction of E(V-I) = 0.06 mag were determined for NGC 3319. This galaxy is the last galaxy observed for the HST H0 Key Project.Comment: 22 pages. A gzipped tar file containing 16 figures can be obtained from http://www.ipac.caltech.edu/H0kp/n3319/n3319.htm

    The HST Key Project on the Extragalactic Distance Scale. XXII. The Discovery of Cepheids in NGC 1326-A

    Full text link
    We report on the detection of Cepheids and the first distance measurement to the spiral galaxy NGC 1326-A, a member of the Fornax cluster of galaxies. We have employed data obtained with the Wide Field and Planetary Camera 2 on board the Hubble Space Telescope. Over a 49 day interval, a total of twelve V-band (F555W) and eight I-band (F814W) epochs of observation were obtained. Two photometric reduction packages, ALLFRAME and DoPHOT, have been employed to obtain photometry measures from the three Wide Field CCDs. Variability analysis yields a total of 17 Cepheids in common with both photometry datasets, with periods ranging between 10 and 50 days. Of these 14 Cepheids with high-quality lightcurves are used to fit the V and I period-luminosity relations and derive apparent distance moduli, assuming a Large Magellanic Cloud distance modulus (m-M) (LMC) = 18.50 +- 0.10 mag and color excess E(B-V) = 0.10 mag. Assuming A(V)/E(V-I) = 2.45, the DoPHOT data yield a true distance modulus to NGC 1326-A of (m-M)_0 = 31.36 +- 0.17 (random) +- 0.13 (systematic) mag, corresponding to a distance of 18.7 \pm 1.5 (random) \pm 1.2 (systematic) Mpc. The derived distance to NGC 1326-A is in good agreement with the distance derived previously to NGC 1365, another spiral galaxy member of the Fornax cluster. However the distances to both galaxies are significantly lower than to NGC 1425, a third Cepheid calibrator in the outer parts of the cluster.Comment: 33 pages A gzipped tar file containing 12 figures can be obtained from http://www.ipac.caltech.edu/H0kp/n1326a/n1326a.htm

    The HST Key Project on the Extragalactic Distance Scale XVII. The Cepheid Distance to NGC 4725

    Get PDF
    The distance to NGC 4725 has been derived from Cepheid variables, as part of the Hubble Space Telescope Key Project on the Extragalactic Distance Scale. Thirteen F555W (V) and four F814W (I) epochs of cosmic-ray-split Wide Field and Planetary Camera 2 observations were obtained. Twenty Cepheids were discovered, with periods ranging from 12 to 49 days. Adopting a Large Magellanic Cloud distance modulus and extinction of 18.50+/-0.10 mag and E(V-I)=0.13 mag, respectively, a true reddening-corrected distance modulus (based on an analysis employing the ALLFRAME software package) of 30.50 +/- 0.16 (random) +/- 0.17 (systematic) mag was determined for NGC 4725. The corresponding of distance of 12.6 +/- 1.0 (random) +/- 1.0 (systematic) Mpc is in excellent agreement with that found with an independent analysis based upon the DoPHOT photometry package. With a foreground reddening of only E(V-I)=0.02, the inferred intrinsic reddening of this field in NGC 4725, E(V-I)=0.19, makes it one of the most highly-reddened, encountered by the HST Key Project, to date.Comment: To be published in The Astrophysical Journal, Vol. 512 (1999). 34 pages, LaTeX, 9 jpg figure

    The HST Key Project on the Extragalactic Distance Scale XXV. A Recalibration of Cepheid Distances to Type Ia Supernovae and the Value of the Hubble Constant

    Get PDF
    Cepheid-based distances to seven Type Ia supernovae (SNe)-host galaxies have been derived using the standard HST Key Project on the Extragalactic Distance Scale pipeline. For the first time, this allows for a transparent comparison of data accumulated as part of three different HST projects, the Key Project, the Sandage et al. Type Ia SNe program, and the Tanvir et al. Leo I Group study. Re-analyzing the Tanvir et al. galaxy and six Sandage et al. galaxies we find a mean (weighted) offset in true distance moduli of 0.12+/-0.07 mag -- i.e., 6% in linear distance -- in the sense of reducing the distance scale, or increasing H0. Adopting the reddening-corrected Hubble relations of Suntzeff et al. (1999), tied to a zero point based upon SNe~1990N, 1981B, 1998bu, 1989B, 1972E and 1960F and the photometric calibration of Hill et al. (1998), leads to a Hubble constant of H0=68+/-2(random)+/-5(systematic) km/s/Mpc. Adopting the Kennicutt et al. (1998) Cepheid period-luminosity-metallicity dependency decreases the inferred H0 by 4%. The H0 result from Type Ia SNe is now in good agreement, to within their respective uncertainties, with that from the Tully-Fisher and surface brightness fluctuation relations.Comment: Accepted for publication in The Astrophysical Journal. 62 pages, LaTeX, 9 Postscript figures. Also available at http://casa.colorado.edu/~bgibson/publications.htm

    The HST Key Project on the Extragalactic Distance Scale XXVI. The Calibration of Population II Secondary Distance Indicators and the Value of the Hubble Constant

    Get PDF
    A Cepheid-based calibration is derived for four distance indicators that utilize stars in the old stellar populations: the tip of the red giant branch (TRGB), the planetary nebula luminosity function (PNLF), the globular cluster luminosity function (GCLF) and the surface brightness fluctuation method (SBF). The calibration is largely based on the Cepheid distances to 18 spiral galaxies within cz =1500 km/s obtained as part of the HST Key Project on the Extragalactic Distance Scale, but relies also on Cepheid distances from separate HST and ground-based efforts. The newly derived calibration of the SBF method is applied to obtain distances to four Abell clusters in the velocity range between 3800 and 5000 km/s, observed by Lauer et al. (1998) using the HST/WFPC2. Combined with cluster velocities corrected for a cosmological flow model, these distances imply a value of the Hubble constant of H0 = 69 +/- 4 (random) +/- 6 (systematic) km/s/Mpc. This result assumes that the Cepheid PL relation is independent of the metallicity of the variable stars; adopting a metallicity correction as in Kennicutt et al. (1998), would produce a (5 +/- 3)% decrease in H0. Finally, the newly derived calibration allows us to investigate systematics in the Cepheid, PNLF, SBF, GCLF and TRGB distance scales.Comment: Accepted for publication in the Astrophysical Journal. 48 pages (including 13 figures and 4 tables), plus two additional tables in landscape format. Also available at http://astro.caltech.edu/~lff/pub.htm K' SBF magnitudes have been update

    The HST Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant

    Full text link
    Since the launch of the Hubble Space Telescope nine years ago, Cepheid distances to 25 galaxies have been determined for the purpose of calibrating secondary distance indicators. A variety of these can now be calibrated, and the accompanying papers by Sakai, Kelson, Ferrarese, and Gibson employ the full set of 25 galaxies to consider the Tully-Fisher relation, the fundamental plane of elliptical galaxies, Type Ia supernovae, and surface brightness fluctuations. When calibrated with Cepheid distances, each of these methods yields a measurement of the Hubble constant and a corresponding measurement uncertainty. We combine these measurements in this paper, together with a model of the velocity field, to yield the best available estimate of the value of H_0 within the range of these secondary distance indicators and its uncertainty. The result is H_0 = 71 +/- 6 km/sec/Mpc. The largest contributor to the uncertainty of this 67% confidence level result is the distance of the Large Magellanic Cloud, which has been assumed to be 50 +/- 3 kpc

    The Hubble Space Telescope Key Project on the Extragalactic Distance Scale XXIV: The Calibration of Tully-Fisher Relations and the Value of the Hubble Constant

    Get PDF
    This paper presents the calibration of BVRIH$ Tully-Fisher relations based on Cepheid distances to 21 galaxies within 25 Mpc, and 23 clusters within 10,000 km/s. These relations have been applied to several distant cluster surveys in order to derive a value for the Hubble constant, H0, mainly concentrating on an I-band all-sky survey by Giovanelli and collaborators which consisted of total I magnitudes and 50% linewidth data for ~550 galaxies in 16 clusters. For comparison, we also derive the values of H0 using surveys in B-band and V-band by Bothun and collaborators, and in H-band by Aaronson and collaborators. Careful comparisons with various other databases from literature suggest that the H-band data, whose magnitudes are isophotal magnitudes extrapolated from aperture magnitudes rather than total magnitudes, are subject to systematic uncertainties. Taking a weighted average of the estimates of Hubble constants from four surveys, we obtain H0 = 71 +- 4 (random) +- 7 (systematic) km/s/Mpc. We have also investigated how various systematic uncertainties affect the value of H0 such as the internal extinction correction method used, Tully-Fisher slopes and shapes, a possible metallicity dependence of the Cepheid period-luminosity relation and cluster population incompleteness bias.Comment: 34 pages, 13 figure

    The Hubble Space Telescope Extragalactic Distance Scale Key Project. X. The Cepheid Distance to NGC 7331

    Full text link
    The distance to NGC 7331 has been derived from Cepheid variables observed with HST/WFPC2, as part of the Extragalactic Distance Scale Key Project. Multi-epoch exposures in F555W (V) and F814W (I), with photometry derived independently from DoPHOT and DAOPHOT/ALLFRAME programs, were used to detect a total of 13 reliable Cepheids, with periods between 11 and 42 days. The relative distance moduli between NGC 7331 and the LMC, imply an extinction to NGC 7331 of A_V = 0.47+-0.15 mag, and an extinction-corrected distance modulus to NGC 7331 of 30.89+-0.14(random) mag, equivalent to a distance of 15.1 Mpc. There are additional systematic uncertainties in the distance modulus of +-0.12 mag due to the calibration of the Cepheid Period-Luminosity relation, and a systematic offset of +0.05+-0.04 mag if we applied the metallicity correction inferred from the M101 results of Kennicutt et al 1998.Comment: To be published in The Astrophysical Journal, 1998 July 1, v501 note: Figs 1 and 2 (JPEG files) and Fig 7 (multipage .eps file) need to be viewed/printed separatel
    • …
    corecore