1,648 research outputs found

    Many uses, many annotations for large speech corpora: Switchboard and TDT as case studies

    Full text link
    This paper discusses the challenges that arise when large speech corpora receive an ever-broadening range of diverse and distinct annotations. Two case studies of this process are presented: the Switchboard Corpus of telephone conversations and the TDT2 corpus of broadcast news. Switchboard has undergone two independent transcriptions and various types of additional annotation, all carried out as separate projects that were dispersed both geographically and chronologically. The TDT2 corpus has also received a variety of annotations, but all directly created or managed by a core group. In both cases, issues arise involving the propagation of repairs, consistency of references, and the ability to integrate annotations having different formats and levels of detail. We describe a general framework whereby these issues can be addressed successfully.Comment: 7 pages, 2 figure

    Biotechnology and Poverty Reduction in Developing Countries

    Get PDF
    sustainable development, technology, food, health, agriculture

    Death of Stellar Baryonic Dark Matter

    Get PDF
    The nature of the dark matter in the haloes of galaxies is one of the outstanding questions in astrophysics. All stellar candidates, until recently thought to be likely baryonic contributions to the Halo of our Galaxy, are shown to be ruled out. Faint stars and brown dwarfs are found to constitute only a few percent of the mass of the Galaxy. Stellar remnants, including white dwarfs and neutron stars, are shown to be very constrained as well. High energy gamma-rays observed in HEGRA data place the strongest constraints, ΩWD<3×10−3h−1\Omega_{WD} < 3 \times 10^{-3} h^{-1}, where hh is the Hubble constant in units of 100 km s−1^{-1} Mpc−1^{-1}. Hence one is left with several unanswered questions: 1) What are MACHOs seen in microlensing surveys? 2) What is the dark matter in our Galaxy? Indeed a nonbaryonic component in the Halo seems to be required.Comment: 6 pages ps fil

    Massive Compact Halo Objects Viewed from a Cosmological Perspective: Contribution to the Baryonic Mass Density of the Universe

    Get PDF
    [Abridged] We estimate the contribution of Massive Compact Halo Objects (Machos) and their stellar progenitors to the mass density of the Universe. If the Machos that have been detected reside in the Halo of our Galaxy, then a simple extrapolation of the Galactic population (out to 50 kpc) of Machos to cosmic scales gives a cosmic density \rho_{Macho} = (1-5) \times 10^9 h \msun \Mpc^{-3}, which in terms of the critical density corresponds to ΩMacho=(0.0036−0.017)h−1\Omega_{Macho}=(0.0036-0.017) h^{-1}. Such a mass density is comparable to the baryon density implied by Big Bang Nucleosynthesis. If we take the central values of the estimates, then Machos dominate the baryonic content of the Universe today, with ΩMacho/ΩBaryon∼0.7h\Omega_{Macho}/\Omega_{Baryon} \sim 0.7 h. However, the cumulative uncertainties in the density determinations only require that ΩMacho/ΩBaryon≥1/6hfgal\Omega_{Macho}/\Omega_{Baryon} \geq 1/6 h f_{gal}, where the fraction of galaxies that contain Machos fgal>0.17f_{gal} > 0.17, and hh is the Hubble constant in units of 100 km s−1^{-1} Mpc−1^{-1}. Our best estimate for ΩMacho\Omega_{Macho} is hard to reconcile with the current best estimates of the baryonic content of the intergalactic medium indicated by measurements of the Lyman-α\alpha forest. We explore the addition constraints that arise if the Machos are white dwarfs as suggested by the present microlensing data. We discuss the challenges this scenario presents at both the local and cosmic scales, emphasizing in particular the constraints on the required mass budget and nucleosynthesis products (particularly carbon).Comment: 18 pages, LaTeX, uses AASTeX macros. In press, New Astronomy (submitted Jan. 20, 1998
    • …
    corecore