138 research outputs found
SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases
The Internet has enabled the creation of a growing number of large-scale
knowledge bases in a variety of domains containing complementary information.
Tools for automatically aligning these knowledge bases would make it possible
to unify many sources of structured knowledge and answer complex queries.
However, the efficient alignment of large-scale knowledge bases still poses a
considerable challenge. Here, we present Simple Greedy Matching (SiGMa), a
simple algorithm for aligning knowledge bases with millions of entities and
facts. SiGMa is an iterative propagation algorithm which leverages both the
structural information from the relationship graph as well as flexible
similarity measures between entity properties in a greedy local search, thus
making it scalable. Despite its greedy nature, our experiments indicate that
SiGMa can efficiently match some of the world's largest knowledge bases with
high precision. We provide additional experiments on benchmark datasets which
demonstrate that SiGMa can outperform state-of-the-art approaches both in
accuracy and efficiency.Comment: 10 pages + 2 pages appendix; 5 figures -- initial preprin
Recommended from our members
Soft topographic map for clustering and classification of bacteria
In this work a new method for clustering and building a
topographic representation of a bacteria taxonomy is presented. The method is based on the analysis of stable parts of the genome, the so-called “housekeeping genes”. The proposed method generates topographic maps of the bacteria taxonomy, where relations among different
type strains can be visually inspected and verified. Two well known DNA alignement algorithms are applied to the genomic sequences. Topographic maps are optimized to represent the similarity among the sequences according to their evolutionary distances. The experimental analysis is carried out on 147 type strains of the Gammaprotebacteria
class by means of the 16S rRNA housekeeping gene. Complete sequences of the gene have been retrieved from the NCBI public database. In the experimental tests the maps show clusters of homologous type strains and present some singular cases potentially due to incorrect classification
or erroneous annotations in the database
Cooperative AI: machines must learn to find common ground
Artificial-intelligence assistants and recommendation algorithms interact with billions of people every day, influencing lives in myriad ways, yet they still have little understanding of humans. Self-driving vehicles controlled by artificial intelligence (AI) are gaining mastery of their interactions with the natural world, but they are still novices when it comes to coordinating with other cars and pedestrians or collaborating with their human operators
Managing Risk of Bidding in Display Advertising
In this paper, we deal with the uncertainty of bidding for display
advertising. Similar to the financial market trading, real-time bidding (RTB)
based display advertising employs an auction mechanism to automate the
impression level media buying; and running a campaign is no different than an
investment of acquiring new customers in return for obtaining additional
converted sales. Thus, how to optimally bid on an ad impression to drive the
profit and return-on-investment becomes essential. However, the large
randomness of the user behaviors and the cost uncertainty caused by the auction
competition may result in a significant risk from the campaign performance
estimation. In this paper, we explicitly model the uncertainty of user
click-through rate estimation and auction competition to capture the risk. We
borrow an idea from finance and derive the value at risk for each ad display
opportunity. Our formulation results in two risk-aware bidding strategies that
penalize risky ad impressions and focus more on the ones with higher expected
return and lower risk. The empirical study on real-world data demonstrates the
effectiveness of our proposed risk-aware bidding strategies: yielding profit
gains of 15.4% in offline experiments and up to 17.5% in an online A/B test on
a commercial RTB platform over the widely applied bidding strategies
Web-Scale Bayesian click-through rate prediction for sponsored search advertising in Microsoft's Bing search engine
We describe a new Bayesian click-through rate
(CTR) prediction algorithm used for Sponsored
Search in Microsoft's Bing search engine. The
algorithm is based on a probit regression model
that maps discrete or real-valued input features to
probabilities. It maintains Gaussian beliefs over
weights of the model and performs Gaussian
online updates derived from approximate
message passing. Scalability of the algorithm is
ensured through a principled weight pruning
procedure and an approximate parallel
implementation. We discuss the challenges
arising from evaluating and tuning the predictor
as part of the complex system of sponsored
search where the predictions made by the
algorithm decide about future training sample
composition. Finally, we show experimental
results from the production system and compare
to a calibrated NaĂŻve Bayes algorithm
Confidential Boosting with Random Linear Classifiers for Outsourced User-generated Data
User-generated data is crucial to predictive modeling in many applications.
With a web/mobile/wearable interface, a data owner can continuously record data
generated by distributed users and build various predictive models from the
data to improve their operations, services, and revenue. Due to the large size
and evolving nature of users data, data owners may rely on public cloud service
providers (Cloud) for storage and computation scalability. Exposing sensitive
user-generated data and advanced analytic models to Cloud raises privacy
concerns. We present a confidential learning framework, SecureBoost, for data
owners that want to learn predictive models from aggregated user-generated data
but offload the storage and computational burden to Cloud without having to
worry about protecting the sensitive data. SecureBoost allows users to submit
encrypted or randomly masked data to designated Cloud directly. Our framework
utilizes random linear classifiers (RLCs) as the base classifiers in the
boosting framework to dramatically simplify the design of the proposed
confidential boosting protocols, yet still preserve the model quality. A
Cryptographic Service Provider (CSP) is used to assist the Cloud's processing,
reducing the complexity of the protocol constructions. We present two
constructions of SecureBoost: HE+GC and SecSh+GC, using combinations of
homomorphic encryption, garbled circuits, and random masking to achieve both
security and efficiency. For a boosted model, Cloud learns only the RLCs and
the CSP learns only the weights of the RLCs. Finally, the data owner collects
the two parts to get the complete model. We conduct extensive experiments to
understand the quality of the RLC-based boosting and the cost distribution of
the constructions. Our results show that SecureBoost can efficiently learn
high-quality boosting models from protected user-generated data
Reinforcement Learning Agents acquire Flocking and Symbiotic Behaviour in Simulated Ecosystems
In nature, group behaviours such as flocking as well as cross-species symbiotic partnerships are observed in vastly different forms and circumstances. We hypothesize that such strategies can arise in response to generic predator-prey pressures in a spatial environment with range-limited sensation and action. We evaluate whether these forms of coordination can emerge by independent multi-agent reinforcement learning in simple multiple-species ecosystems. In contrast to prior work, we avoid hand-crafted shaping rewards, specific actions, or dynamics that would directly encourage coordination across agents. Instead we test whether coordination emerges as a consequence of adaptation without encouraging these specific forms of coordination, which only has indirect benefit. Our simulated ecosystems consist of a generic food chain involving three trophic levels: apex predator, mid-level predator, and prey. We conduct experiments on two different platforms, a 3D physics engine with tens of agents as well as in a 2D grid world with up to thousands. The results clearly confirm our hypothesis and show substantial coordination both within and across species. To obtain these results, we leverage and adapt recent advances in deep reinforcement learning within an ecosystem training protocol featuring homogeneous groups of independent agents from different species (sets of policies), acting in many different random combinations in parallel habitats. The policies utilize neural network architectures that are invariant to agent individuality but not type (species) and that generalize across varying numbers of observed other agents. While the emergence of complexity in artificial ecosystems have long been studied in the artificial life community, the focus has been more on individual complexity and genetic algorithms or explicit modelling, and less on group complexity and reinforcement learning emphasized in this article. Unlike what the name and intuition suggests, reinforcement learning adapts over evolutionary history rather than a life-time and is here addressing the sequential optimization of fitness that is usually approached by genetic algorithms in the artificial life community. We utilize a shift from procedures to objectives, allowing us to bring new powerful machinery to bare, and we see emergence of complex behaviour from a sequence of simple optimization problems
Bounds and dynamics for empirical game theoretic analysis
This paper provides several theoretical results for empirical game theory. Specifically, we introduce bounds for empirical game theoretical analysis of complex multi-agent interactions. In doing so we provide insights in the empirical meta game showing that a Nash equilibrium of the estimated meta-game is an approximate Nash equilibrium of the true underlying meta-game. We investigate and show how many data samples are required to obtain a close enough approximation of the underlying game. Additionally, we extend the evolutionary dynamics analysis of meta-games using heuristic payoff tables (HPTs) to asymmetric games. The state-of-the-art has only considered evolutionary dynamics of symmetric HPTs in which agents have access to the same strategy sets and the payoff structure is symmetric, implying that agents are interchangeable. Finally, we carry out an empirical illustration of the generalised method in several domains, illustrating the theory and evolutionary dynamics of several versions of the AlphaGo algorithm (symmetric), the dynamics of the Colonel Blotto game played by human players on Facebook (symmetric), the dynamics of several teams of players in the capture the flag game (symmetric), and an example of a meta-game in Leduc Poker (asymmetric), generated by the policy-space response oracle multi-agent learning algorithm
Depth optimized efficient homomorphic sorting
We introduce a sorting scheme which is capable of efficiently sorting encrypted data without the secret key. The technique is obtained by focusing on the multiplicative depth of the sorting circuit alongside the more traditional metrics such as number of comparisons and number of iterations. The reduced depth allows much reduced noise growth and thereby makes it possible to select smaller parameter sizes in somewhat homomorphic encryption instantiations resulting in greater efficiency savings. We first consider a number of well known comparison based sorting algorithms as well as some sorting networks, and analyze their circuit implementations with respect to multiplicative depth. In what follows, we introduce a new ranking based sorting scheme and rigorously analyze the multiplicative depth complexity as O(log(N) + log(l)), where N is the size of the array to be sorted and l is the bit size of the array elements. Finally, we simulate our sorting scheme using a leveled/batched instantiation of a SWHE library. Our sorting scheme performs favorably over the analyzed classical sorting algorithms
Multi-agent Reinforcement Learning in Sequential Social Dilemmas
Matrix games like Prisoner's Dilemma have guided research on social dilemmas for decades. However, they necessarily treat the choice to cooperate or defect as an atomic action. In real-world social dilemmas these choices are temporally extended. Cooperativeness is a property that applies to policies, not elementary actions. We introduce sequential social dilemmas that share the mixed incentive structure of matrix game social dilemmas but also require agents to learn policies that implement their strategic intentions. We analyze the dynamics of policies learned by multiple self-interested independent learning agents, each using its own deep Q-network, on two Markov games we introduce here: 1. a fruit Gathering game and 2. a Wolfpack hunting game. We characterize how learned behavior in each domain changes as a function of environmental factors including resource abundance. Our experiments show how conflict can emerge from competition over shared resources and shed light on how the sequential nature of real world social dilemmas affects cooperation
- …