4 research outputs found

    Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration

    Get PDF
    Vaccine development against pathogenic bacteria is an imperative initiative as bacteria are gaining resistance to current antimicrobial therapies and few novel antibiotics are being developed. Candidate antigens for vaccine development can be identified by a multitude of high-throughput technologies that were accelerated by access to complete genomes. While considerable success has been achieved in vaccine development against bacterial pathogens, many species with multiple virulence factors and modes of infection have provided reasonable challenges in identifying protective antigens. In particular, vaccine candidates should be evaluated in the context of the complex disease properties, whether planktonic (e.g. sepsis and pneumonia) and/or biofilm associated (e.g. indwelling medical device infections). Because of the phenotypic differences between these modes of growth, those vaccine candidates chosen only for their efficacy in one disease state may fail against other infections. This review will summarize the history and types of bacterial vaccines and adjuvants as well as present an overview of modern antigen discovery and complications brought about by polymicrobial infections. Finally, we will also use one of the better studied microbial species that uses differential, multifactorial protein profiles to mediate an array of diseases, Staphylococcus aureus, to outline some of the more recently identified problematic issues in vaccine development in this biofilm-forming species

    Effect of pH and Antibiotics on Microbial Overgrowth in the Stomachs and Duodena of Patients Undergoing Percutaneous Endoscopic Gastrostomy Feeding

    No full text
    Enteral nutrition via a percutaneous endoscopic gastrostomy (PEG) tube is often part of management in patients with dysphagia due to neurological or oropharyngeal disease. Gastrostomy placement can affect normal innate defense mechanisms in the upper gut, resulting in bacterial overgrowth. In this study microbiological investigations were done with gastric and duodenal aspirates from 20 patients undergoing PEG tube placement and PEG tubes from 10 patients undergoing tube replacement. Aspirate and PEG tube microbiotas were assessed by using viable counts and selective solid media followed by aerobic and anaerobic incubation to assess cell viabilities. The antibiotic susceptibility profiles of the isolates were determined by the disk diffusion method, and gas chromatography was used to study the bacterial metabolic products in the aspirates. The aspirates and PEG tubes contained mainly streptococci, staphylococci, lactobacilli, yeasts, and enterobacteria. Enterococci were detected only in PEG tube biofilms and not in aspirates. Gastric pH affected the composition of the aspirate microbiotas but not the total microbial counts. Staphylococci, Escherichia coli, and Candida spp. were isolated only from antibiotic-treated patients, despite the sensitivities of the bacteria to the agents used. Antibiotic treatment had no effect on the incidence of infection or the length of hospital stay in these patients

    Resolution of Staphylococcus aureus Biofilm Infection Using Vaccination and Antibiotic Treatment ▿ †

    No full text
    Staphylococcus aureus infections, particularly those from methicillin-resistant strains (i.e., MRSA), are reaching epidemic proportions, with no effective vaccine available. The vast number and transient expression of virulence factors in the infectious course of this pathogen have made the discovery of protective antigens particularly difficult. In addition, the divergent planktonic and biofilm modes of growth with their accompanying proteomic changes also demonstrate significant hindrances to vaccine development. In this study, a multicomponent vaccine was evaluated for its ability to clear a staphylococcal biofilm infection. Antigens (glucosaminidase, an ABC transporter lipoprotein, a conserved hypothetical protein, and a conserved lipoprotein) were chosen since they were found in previous studies to have upregulated and sustained expression in a biofilm, both in vitro and in vivo. Antibodies against these antigens were first used in microscopy studies to localize their expression in in vitro biofilms. Each of the four antigens showed heterogeneous production in various locations within the complex biofilm community in the biofilm. Based upon these studies, the four antigens were delivered simultaneously as a quadrivalent vaccine in order to compensate for this varied production. In addition, antibiotic treatment was also administered to clear the remaining nonattached planktonic cells since the vaccine antigens may have been biofilm specific. The results demonstrated that when vaccination was coupled with vancomycin treatment in a biofilm model of chronic osteomyelitis in rabbits, clinical and radiographic signs of infection significantly reduced by 67 and 82%, respectively, compared to infected animals that were either treated with vancomycin or left untreated. In contrast, vaccination alone resulted in a modest, and nonsignificant, decrease in clinical (34% reduction) and radiographic signs (9% reduction) of infection, compared to nonvaccinated animal groups untreated or treated with vancomycin. Lastly, MRSA biofilm infections were significantly cleared in 87.5% of vaccinated and antibiotic-treated animals, while antibiotics or vaccine alone could not significantly clear infection compared to controls (55.6, 22.2, and 33.3% clearance rates, respectively). This approach to vaccine development may lead to the generation of vaccines against other pathogenic biofilm bacteria
    corecore