289 research outputs found
Phase diagram of orbital-selective Mott transitions at finite temperatures
Mott transitions in the two-orbital Hubbard model with different bandwidths
are investigated at finite temperatures. By means of the self-energy functional
approach, we discuss the stability of the intermediate phase with one orbital
localized and the other itinerant, which is caused by the orbital-selective
Mott transition (OSMT). It is shown that the OSMT realizes two different
coexistence regions at finite temperatures in accordance with the recent
results of Liebsch. We further find that the particularly interesting behavior
emerges around the special condition and J=0, which includes a new type
of the coexistence region with three distinct states. By systematically
changing the Hund coupling, we establish the global phase diagram to elucidate
the key role played by the Hund coupling on the Mott transitions.Comment: 4 pages, 6 figure
Rfx6 Maintains the Functional Identity of Adult Pancreatic β Cells.
SummaryIncreasing evidence suggests that loss of β cell characteristics may cause insulin secretory deficiency in diabetes, but the underlying mechanisms remain unclear. Here, we show that Rfx6, whose mutation leads to neonatal diabetes in humans, is essential to maintain key features of functionally mature β cells in mice. Rfx6 loss in adult β cells leads to glucose intolerance, impaired β cell glucose sensing, and defective insulin secretion. This is associated with reduced expression of core components of the insulin secretion pathway, including glucokinase, the Abcc8/SUR1 subunit of KATP channels and voltage-gated Ca2+ channels, which are direct targets of Rfx6. Moreover, Rfx6 contributes to the silencing of the vast majority of “disallowed” genes, a group usually specifically repressed in adult β cells, and thus to the maintenance of β cell maturity. These findings raise the possibility that changes in Rfx6 expression or activity may contribute to β cell failure in humans
Defense styles from the perspective of affective neuroscience
To our knowledge, no study has been carried out to observe which subcortical basic affective systems are related to which defense styles. Such a perspective may have the potential to reveal how defenses may interact with subcortical primary emotional systems (PES) and how they contribute to affect regulation. We aimed to analyze the relationship of immature, neurotic, and mature defenses with basic subcortical affects (CARE, PLAY, SEEK, SADNESS, FEAR, ANGER) within an affective neuroscientific perspective. In addition, we sought to explore the effect of psychiatric disorders in relation to PES and defenses, and observe gender effects, if any. The sample consisted of 703 university students, recruited online. The materials included the Turkish translations of the Affective Neuroscience Personality Scales (ANPS) and the Defense Style Questionnaire (DSQ). The correlations between ANPS and DSQ showed that the immature defenses increase as all negative emotions increase, whereas mature defenses increase as all positive emotions (except CARE) increase and all negative affects decrease (except ANGER). On the other hand, as neurotic defenses increase, CARE, FEAR and SADNESS simultaneously increase. Subjects who reported the presence of psychiatric disorders also reported higher FEAR, SADNESS, ANGER accompanied by higher immature defenses. Finally, male subjects reported higher immature defenses, whereas the females reported higher neurotic defenses, accompanied by higher CARE, SEEK, SADNESS, FEAR, and slightly lower PLAY. Investigating defenses through the lens of affective neuroscience offers the opportunity to link the abstract concept of defenses to increasingly well-understood neurobiology
The Lantern Vol. 18, No. 3, Spring 1950
• The Rise and Fall of Mr. Fluff • Thoughts by the Sea • Equality of Men • On Radio Comedians • After Hours • Rain • Morning • Escape from Fear • Book of Red • Poems by a Guy Named Mike • We are the People • Spirit Disrupted • Light • Sonnethttps://digitalcommons.ursinus.edu/lantern/1051/thumbnail.jp
Observational evidence for self-interacting cold dark matter
Cosmological models with cold dark matter composed of weakly interacting
particles predict overly dense cores in the centers of galaxies and clusters
and an overly large number of halos within the Local Group compared to actual
observations. We propose that the conflict can be resolved if the cold dark
matter particles are self-interacting with a large scattering cross-section but
negligible annihilation or dissipation. In this scenario, astronomical
observations may enable us to study dark matter properties that are
inaccessible in the laboratoryComment: 4 pages, no figures; added references, pedagogical improvements, to
appear in PR
Linear and non-linear perturbations in dark energy models
I review the linear and second-order perturbation theory in dark energy
models with explicit interaction to matter in view of applications to N-body
simulations and non-linear phenomena. Several new or generalized results are
obtained: the general equations for the linear perturbation growth; an
analytical expression for the bias induced by a species-dependent interaction;
the Yukawa correction to the gravitational potential due to dark energy
interaction; the second-order perturbation equations in coupled dark energy and
their Newtonian limit. I also show that a density-dependent effective dark
energy mass arises if the dark energy coupling is varying.Comment: 12 pages, submitted to Phys. Rev; v2: added a ref. and corrected a
typ
Musashi expression in β-cells coordinates insulin expression, apoptosis and proliferation in response to endoplasmic reticulum stress in diabetes
Diabetes is associated with the death and dysfunction of insulin-producing pancreatic β-cells. In other systems, Musashi genes regulate cell fate via Notch signaling, which we recently showed regulates β-cell survival. Here we show for the first time that human and mouse adult islet cells express mRNA and protein of both Musashi isoforms, as well Numb/Notch/Hes/neurogenin-3 pathway components. Musashi expression was observed in insulin/glucagon double-positive cells during human fetal development and increased during directed differentiation of human embryonic stem cells (hESCs) to the pancreatic lineage. De-differentiation of β-cells with activin A increased Msi1 expression. Endoplasmic reticulum (ER) stress increased Msi2 and Hes1, while it decreased Ins1 and Ins2 expression, revealing a molecular link between ER stress and β-cell dedifferentiation in type 2 diabetes. These effects were independent of changes in Numb protein levels and Notch activation. Overexpression of MSI1 was sufficient to increase Hes1, stimulate proliferation, inhibit apoptosis and reduce insulin expression, whereas Msi1 knockdown had the converse effects on proliferation and insulin expression. Overexpression of MSI2 resulted in a decrease in MSI1 expression. Taken together, these results demonstrate overlapping, but distinct roles for Musashi-1 and Musashi-2 in the control of insulin expression and β-cell proliferation. Our data also suggest that Musashi is a novel link between ER stress and the compensatory β-cell proliferation and the loss of β-cell gene expression seen in specific phases of the progression to type 2 diabetes
Pdx1 and Ngn3 Overexpression Enhances Pancreatic Differentiation of Mouse ES Cell-Derived Endoderm Population
In order to define the molecular mechanisms regulating the specification and differentiation of pancreatic β-islet cells, we investigated the effect of upregulating Pdx1 and Ngn3 during the differentiation of the β-islet-like cells from murine embryonic stem (ES) cell-derived activin induced-endoderm. Induced overexpression of Pdx1 resulted in a significant upregulation of insulin (Ins1 and Ins2), and other pancreas-related genes. To enhance the developmental progression from the pancreatic bud to the formation of the endocrine lineages, we induced the overexpression express of Ngn3 together with Pdx1. This combination dramatically increased the level and timing of maximal Ins1 mRNA expression to approximately 100% of that found in the βTC6 insulinoma cell line. Insulin protein and C-peptide expression was confirmed by immunohistochemistry staining. These inductive effects were restricted to c-kit+ endoderm enriched EB-derived populations suggesting that Pdx1/Ngn3 functions after the specification of pancreatic endoderm. Although insulin secretion was stimulated by various insulin secretagogues, these cells had only limited glucose response. Microarray analysis was used to evaluate the expression of a broad spectrum of pancreatic endocrine cell-related genes as well as genes associated with glucose responses. Taken together, these findings demonstrate the utility of manipulating Pdx1 and Ngn3 expression in a stage-specific manner as an important new strategy for the efficient generation of functionally immature insulin-producing β-islet cells from ES cells
Plasticity of Adult Human Pancreatic Duct Cells by Neurogenin3-Mediated Reprogramming
AIMS/HYPOTHESIS: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS: The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS: Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION: The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes
- …