125 research outputs found

    β-glucan-enriched fraction from mosaic puffball induces inflammation in an in vitro 3D bovine chondrocytes model

    Get PDF
    Fungal β-glucans are well-known for their immunomodulatory activity. They act as pathogen-associated molecular patterns (PAMPs) and can bind to a number of pattern-recognition receptors (PRRs). Activation of PRRs leads to inflammatory response and, although these receptors are primarily found in immune cells, chondrocytes express certain types of PRRs as well (toll-like receptors –TLRs). Although β-glucans are primarily considered immune­stimulatory agents, recent research found that they may have beneficial effects in some inflammatory conditions (hence the term “immunomodulators”), in a complex way that is yet to be uncovered. The aim of this study was to investigate if the mushroom β-glucans could induce any changes in metabolic activity and phenotype of bovine chondrocytes, using a 3D cell culture model. For this purpose, glucan-enriched extract of mosaic puffball fruiting bodies, containing up to 70% (1→6)(1→3)β-D-glucan-protein complex was used.ExcellMater Conference 2024: Innovative Biomaterials for Novel Medical Devices, Belgrade, Serbia, April 10-12, 202

    Bovine coccygeal intervertebral discs contain multipotent Tie2+ cells which can differentiate into osteogenic and adipogenic lineages

    Get PDF
    Question: The intervertebral disc (IVD) has a limited regenerative potential and low back pain represents a leading cause of disability [1]. IVD repair strategies require an appropriate cell source that is able to regenerate the damaged tissue such as progenitor stem cells. Recently, progenitor cells that are positive for the angiopoietin re- ceptor (Tie2) in the nucleus pulposus were identified [2]. Here we isolated primary cells from bovine IVD and sorted bovine nucleus pulposus progenitor cells (NPPC) for the marker Tie2. Furthermorewe tested whether Tie2 expressing cells can differentiate into os- teogenic and adipogenic lineages in vitro. Methods: NP cells were obtained from 1 year old bovine tails by sequential digestion with pronase for 1 h and collagenase over- night. Sorted Tie2- and Tie2+ cells were cultured in osteogenic and adipogenic medium for 3 weeks. The formed cell layers from both subpopulations were stained for calcium deposition and fat droplets. Colony forming units were prepared for both cell sus- pensions in methylcellulose-based medium and formed colonies ([10 cells) were analyzed macroscopically after 8 days. Results: After 3 weeks of culture, sorted Tie2+ cells were able to differentiate into osteocytes and adipocytes as characterized by cal- cium deposition and fat droplet formation. By contrast, Tie2- cells generated a weak staining for calcium and no fat droplets were ob- tained (Fig. 1). Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies, however with different morphologies. The colonies formed from Tie2+ cells were spheroid in shape whereas those from Tie2- cells were spread and fibroblastic. Conclusion: Our data showed that Tie2+ cells of the nucleus pul- posus cells are progenitor-like cells that are able to differentiate into osteogenic and adipogenic lineages. Sorting of NPPC for Tie2 may represent a promising strategy with the potential to be used in the clinics for treatment of intervertebral disc damage. References 1. Freemont AJ (2009) The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology (Oxford) 48:5–10 2. Sakai D, Nakamura Y, Nakai T et al (2012) Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 3:1264 Acknowledgments: This project was funded by two projects of the Swiss National Science Foundation grant number #IZK0Z3_154384 and #310030_153411

    Mechanical stress inhibits early stages of endogenous cell migration: A pilot study in an ex vivo osteocho

    Get PDF
    Cell migration has a central role in osteochondral defect repair initiation and biomaterial-mediated regeneration. New advancements to reestablish tissue function include biomaterials and factors promoting cell recruitment, differentiation and tissue integration, but little is known about responses to mechanical stimuli. In the present pilot study, we tested the influence of extrinsic forces in combination with biomaterials releasing chemoattractant signals on cell migration. We used an ex vivo mechanically stimulated osteochondral defect explant filled with fibrin/hyaluronan hydrogel, in presence or absence of platelet-derived growth factor-BB or stromal cell-derived factor 1, to assess endogenous cell recruitment into the wound site. Periodic mechanical stress at early time point negatively influenced cell infiltration compared to unloaded samples, and the implementation of chemokines to increase cell migration was not efficient to overcome this negative effect. The gene expression at 15 days of culture indicated a marked downregulation of matrix metalloproteinase (MMP)13 and MMP3, a decrease of β1 integrin and increased mRNA levels of actin in osteochondral samples exposed to complex load. This work using an ex vivo osteochondral mechanically stimulated advanced platform demonstrated that recurrent mechanical stress at early time points impeded cell migration into the hydrogel, providing a unique opportunity to improve our understanding on management of joint injury

    Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial mechanical loading and FGF18

    Get PDF
    Current treatments for cartilage lesions are often associated with fibrocartilage formation and donor site morbidity. Mechanical and biochemical stimuli play an important role in hyaline cartilage formation. Biocompatible scaffolds capable of transducing mechanical loads and delivering bioactive instructive factors may better support cartilage regeneration. In this study we aimed to test the interplay between mechanical and FGF-18 mediated biochemical signals on the proliferation and differentiation of primary bovine articular chondrocytes embedded in a chondro-conductive Fibrin-Hyaluronan (FB/HA) based hydrogel. Chondrocytes seeded in a Fibrin-HA hydrogel, with or without a chondro-inductive, FGFR3 selective FGF18 variant (FGF-18v) were loaded into a joint-mimicking bioreactor applying controlled, multi-axial movements, simulating the natural movements of articular joints. Samples were evaluated for DNA content, sulphated glycosaminoglycan (sGAG) accumulation, key chondrogenic gene expression markers and histology. Under moderate loading, samples produced particularly significant amounts of sGAG/DNA compared to unloaded controls. Interestingly there was no significant effect of FGF-18v on cartilage gene expression at rest. Following moderate multi-axial loading, FGF-18v upregulated the expression of Aggrecan (ACAN), Cartilage Oligomeric Matrix Protein (COMP), type II collagen (COL2) and Lubricin (PRG4). Moreover, the combination of load and FGF-18v, significantly downregulated Matrix Metalloproteinase-9 (MMP-9) and Matrix Metaloproteinase-13 (MMP-13), two of the most important factors contributing to joint destruction in OA. Biomimetic mechanical signals and FGF-18 may work in concert to support hyaline cartilage regeneration and repair. Statement of significance: Articular cartilage has very limited repair potential and focal cartilage lesions constitute a challenge for current standard clinical procedures. The aim of the present research was to explore novel procedures and constructs, based on biomaterials and biomechanical algorithms that can better mimic joints mechanical and biochemical stimulation to promote regeneration of damaged cartilage. Using a hydrogel-based platform for chondrocyte 3D culture revealed a synergy between mechanical forces and growth factors. Exploring the mechanisms underlying this mechano-biochemical interplay may enhance our understanding of cartilage remodeling and the development of new strategies for cartilage repair and regeneration

    In Vitro Characterization of a Tissue Renin-Angiotensin System in Human Nucleus Pulposus Cells.

    Get PDF
    Low back pain is a clinically highly relevant musculoskeletal burden and is associated with inflammatory as well as degenerative processes of the intervertebral disc. However, the pathophysiology and cellular pathways contributing to this devastating condition are still poorly understood. Based on previous evidence, we hypothesize that tissue renin-angiotensin system (tRAS) components, including the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), are present in human nucleus pulposus (NP) cells and associated with inflammatory and degenerative processes. Experiments were performed with NP cells from four human donors. The existence of angiotensin II, angiotensin II type 1 receptor (AGTR1), AGTR2, MAS-receptor (MasR), and ACE2 in human NP cells was validated with immunofluorescent staining and gene expression analysis. Hereafter, the cell viability was assessed after adding agonists and antagonists of the target receptors as well as angiotensin II in different concentrations for up to 48 h of exposure. A TNF-α-induced inflammatory in vitro model was employed to assess the impact of angiotensin II addition and the stimulation or inhibition of the tRAS receptors on inflammation, tissue remodeling, expression of tRAS markers, and the release of nitric oxide (NO) into the medium. Furthermore, protein levels of IL-6, IL-8, IL-10, and intracellular as well as secreted angiotensin II were assessed after exposing the cells to the substances, and inducible nitric oxide synthase (iNOS) levels were evaluated by utilizing Western blot. The existence of tRAS receptors and angiotensin II were validated in human NP cells. The addition of angiotensin II only showed a mild impact on gene expression markers. However, there was a significant increase in NO secreted by the cells. The gene expression ratios of pro-inflammatory/anti-inflammatory cytokines IL-6/IL-10, IL-8/IL-10, and TNF-α/IL-10 were positively correlated with the AGTR1/AGTR2 and AGTR1/MAS1 ratios, respectively. The stimulation of the AGTR2 MAS-receptor and the inhibition of the AGTR1 receptor revealed beneficial effects on the gene expression of inflammatory and tissue remodeling markers. This finding was also present at the protein level. The current data showed that tRAS components are expressed in human NP cells and are associated with inflammatory and degenerative processes. Further characterization of the associated pathways is warranted. The findings indicate that tRAS modulation might be a novel therapeutic approach to intervertebral disc disease

    Effect of glucose depletion and fructose administration during chondrogenic commitment in human bone marrow-derived stem cells.

    Get PDF
    BACKGROUND Bone marrow mesenchymal stromal cells (BMSCs) are promising for therapeutic use in cartilage repair, because of their capacity to differentiate into chondrocytes. Often, in vitro differentiation protocols employ the use of high amount of glucose, which does not reflect cartilage physiology. For this reason, we investigated how different concentrations of glucose can affect the chondrogenic differentiation of BMSCs in cell culture pellets. Additionally, we investigated how fructose could influence the chondrogenic differentiation in vitro. METHODS BMSC were isolated from six donors and cultured in DMEM containing glucose at either 25 mM (HG), 5.5 mM (LG) or 1 mM (LLG), and 1% non-essential amino acids, 1% ITS+, in the presence of 100 nM dexamethasone, 50 µg/ml ascorbic acid-2 phosphate and 10 ng/ml TGF-β1. To investigate the effect of different metabolic substrates, other groups were exposed to additional 25 mM fructose. The media were replaced every second day until day 21 when all the pellets were harvested for further analyses. Biochemical analysis for glycosaminoglycans into pellets and released in medium was performed using the DMMB method. Expression of GLUT3 and GLUT5 was assayed by qPCR and validated using FACS analysis and immunofluorescence in monolayer cultures. Chondrogenic differentiation was further confirmed by qPCR analysis of COL2A1, COL1A1, COL10A1, ACAN, RUNX2, SOX9, SP7, MMP13, and PPARG, normalized on RPLP0. Type 2 collagen expression was subsequently validated by immunofluorescence analysis. RESULTS We show for the first time the presence of fructose transporter GLUT5 in BMSC and its regulation during chondrogenic commitment. Additionally, decreasing glucose concentration during chondrogenesis dramatically decreased the yield of differentiation. However, the use of fructose alone or together with low glucose concentrations does not limit cell differentiation, but on the contrary it might help in maintaining a stable chondrogenic phenotype comparable with the standard culture conditions (high glucose). CONCLUSION This study provides evidence that BMSC express GLUT5 and differentially regulate GLUT3 in the presence of glucose variation. This study gives a better comprehension of BMSCs sugar use during chondrogenesis

    Comparison and optimization of sheep in vivo intervertebral disc injury model.

    Get PDF
    Background The current standard of care for intervertebral disc (IVD) herniation, surgical discectomy, does not repair annulus fibrosus (AF) defects, which is partly due to the lack of effective methods to do so and is why new repair strategies are widely investigated and tested preclinically. There is a need to develop a standardized IVD injury model in large animals to enable comparison and interpretation across preclinical study results. The purpose of this study was to compare in vivo IVD injury models in sheep to determine which annulus fibrosus (AF) defect type combined with partial nucleus pulposus (NP) removal would better mimic degenerative human spinal pathologies. Methods Six skeletally mature sheep were randomly assigned to one of the two observation periods (1 and 3 months) and underwent creation of 3 different AF defect types (slit, cruciate, and box-cut AF defects) in conjunction with 0.1 g NP removal in three lumbar levels using a lateral retroperitoneal surgical approach. The spine was monitored by clinical CT scans pre- and postoperatively, at 2 weeks and euthanasia, and by magnetic resonance imaging (MRI) and histology after euthanasia to determine the severity of degeneration (disc height loss, Pfirrmann grading, semiquantitative histopathology grading). Results All AF defects led to significant degenerative changes detectable on CT and MR images, produced bulging of disc tissue without disc herniation and led to degenerative and inflammatory histopathological changes. However, AF defects were not equal in terms of disc height loss at 3 months postoperatively; the cruciate and box-cut AF defects showed significantly decreased disc height compared to their preoperative height, with the box-cut defect creating the greatest disc height loss, while the slit AF defect showed restoration of normal preoperative disc height. Conclusions The tested IVD injury models do not all generate comparable disc degeneration but can be considered suitable IVD injury models to investigate new treatments. Results of the current study clearly indicate that slit AF defect should be avoided if disc height is used as one of the main outcomes; additional confirmatory studies may be warranted to generalize this finding

    Celecoxib alleviates nociceptor sensitization mediated by interleukin-1beta-primed annulus fibrosus cells.

    Get PDF
    PURPOSE This study aims to analyze the effect of pro-inflammatory cytokine-stimulated human annulus fibrosus cells (hAFCs) on the sensitization of dorsal root ganglion (DRG) cells. We further hypothesized that celecoxib (cxb) could inhibit hAFCs-induced DRG sensitization. METHODS hAFCs from spinal trauma patients were stimulated with TNF-α or IL-1β. Cxb was added on day 2. On day 4, the expression of pro-inflammatory and neurotrophic genes was evaluated using RT-qPCR. Levels of prostaglandin E2 (PGE-2), IL-8, and IL-6 were measured in the conditioned medium (CM) using ELISA. hAFCs CM was then applied to stimulate the DRG cell line (ND7/23) for 6 days. Then, calcium imaging (Fluo4) was performed to evaluate DRG cell sensitization. Both spontaneous and bradykinin-stimulated (0.5 μM) calcium responses were analyzed. The effects on primary bovine DRG cell culture were performed in parallel to the DRG cell line model. RESULTS IL-1ß stimulation significantly enhanced the release of PGE-2 in hAFCs CM, while this increase was completely suppressed by 10 µM cxb. hAFCs revealed elevated IL-6 and IL-8 release following TNF-α and IL-1β treatment, though cxb did not alter this. The effect of hAFCs CM on DRG cell sensitization was influenced by adding cxb to hAFCs; both the DRG cell line and primary bovine DRG nociceptors showed a lower sensitivity to bradykinin stimulation. CONCLUSION Cxb can inhibit PGE-2 production in hAFCs in an IL-1β-induced pro-inflammatory in vitro environment. The cxb applied to the hAFCs also reduces the sensitization of DRG nociceptors that are stimulated by the hAFCs CM

    Biocharacterization of hydrogels based on poly(methacrylic acid) prepared by eco-friendly method

    Get PDF
    INTRODUCTION: Inflammation process in human body can lead to many serious inflammation-related diseases. Hence, there are urge to find better solution for the treatment of the inflammation processes. Solution can be found in application ofpoly(methacrylicacid) hydrogels which have potential for targeted delivery and controlled release of drugs. These pH-sensitive hydrogelscan swell at the pH values between 5 and 8,and release drug in the process. So,taking into account that pH value at the inflammation site is around 6, these hydrogels are materials of choice. It is very important thatthe system for controlled releasebe prepared through mild and non-toxic conditions in order to preserve bioactivity of the drug andkeep good impact on environment. Enzymes are good candidates for eco-friendly preparation of hydrogels, because these greensubstancescan initiate polymerisation of various monomers. EXPERIMENTAL (or Materials and Methods):In this study, hydrogels based on poly(methacrylic acid) were prepared through eco-friendly method by using enzyme/hydrogen peroxide(HP)/ascorbic acid(AA)as initiator. Two groupsof the samples were prepared: in the first group peroxidase isolated from potato peel waste (with activity of 0.8 IU) was used in the initiation system, whereas in the second group peroxidase isolated from soya bean coats (with activity of 0.8 IU) was employed in the initiation system. The amounts of HPand AAin both series were 40 μL and 10 mg, respectively.Anti-inflammatory drugs,dexamethasone(5 mg/mL)and diclofenac(4.5 mg/mL)were encapsulated in the first and the second group of the PMAA samples, respectively. Anti-inflammatory effect of the PMAA hydrogels with encapsulated drugs were tested on the Bovine Chondrocytes cells. RESULTS AND DISCUSSION:Results showed that the level of pro-inflammatory mediators NO and IL-8 decreased. The PCR analysis showed that the proinflammatory TNα, IL-6 genesexpression level decreased, the matrix catabolism MMP1and MMP3 genesexpression level decreased and the fibrotic COL2 and ACAN genes expression level increased. CONCLUSIONS:The studyshowed that the PMAA hydrogels have anti-inflammatory effect and have potential for treatment of the inflammation processes.ExcellMater Conference 2024: Innovative Biomaterials for Novel Medical Devices, Belgrade, Serbia, April 10-12, 202

    VERTEBRAL OSTEOMYELITIS IS CHARACTERISED BY INCREASED RANK/OPG AND RANKL/OPG EXPRESSION RATIOS IN VERTEBRAL BODIES AND INTERVERTEBRAL DISCS

    Get PDF
    Vertebral osteomyelitis (VO) is an infection of the spine mainly caused by bacterial pathogens. The pathogenesis leading to destruction of intervertebral discs (IVDs) and adjacent vertebral bodies (VBs) is poorly described. The present study aimed at investigating the connection between infection and bone/disc metabolism in VO patients. 14 patients with VO (infection group) and 14 patients with burst fractures of the spine (fracture group; control) were included prospectively. Tissue biopsies from affected IVDs and adjacent VBs were analysed by RT-qPCR for mRNA-expression levels of 18 target genes including chemokines, adipokines and genes involved in bone metabolism. Most importantly, the receptor activator of NF-ÎşB/osteoprotegerin (RANK/OPG) expression ratio was drastically elevated in both VBs and IVDs of the infection group. In parallel, expression of genes of the prostaglandin-E2-dependent prostanoid system was induced. Such genes regulate tissue degradation processes via the triad OPG/RANK/RANKL as well as via the chemokines IL-8 and CCL-20, whose expression was also found to be increased upon infection. The gene expression of the adipokine leptin, which promotes inflammatory tissue degradation, was higher in IVD tissue of the infection group, whereas the transcription of omentin and resistin genes, whose functions are largely unknown in the context of infectious diseases, was lower in infected VBs. In summary, similar expression patterns of pro-inflammatory cytokines and pro-osteoclastogenic factors were identified in VBs and IVDs of patients suffering from VO. This suggests that common immuno-metabolic pathways are involved in the mechanisms leading to tissue degradation in VBs and IVDs during VO
    • …
    corecore