9 research outputs found

    Rapid, High Throughput, Automated Detection of SARS-CoV-2 Neutralizing Antibodies Against Wuhan-Wt, Delta and Omicron BA1, BA2 Spike Trimers

    Get PDF
    Traditional cellular and live-virus methods for detection of SARS-CoV-2 neutralizing antibodies (nAbs) are labor- and time-intensive, and thus not suited for routine use in the clinical lab to predict vaccine efficacy and natural immune protection. Here, we report the development and validation of a rapid, high throughput method for measuring SARS-CoV-2 nAbs against native-like trimeric spike proteins. This assay uses a blockade of human angiotensin converting enzyme 2 (hACE-2) binding (BoAb) approach in an automated digital immunoassay on the Quanterix HD-X platform. BoAb assays using Wuhan-WT (vaccine strain), delta (B.1.167.2), omicron BA1 and BA2 variant viral strains showed strong correlation with cell-based pseudovirus neutralization activity (PNA) and live-virus neutralization activity. Importantly, we were able to detect similar patterns of delta and omicron variant resistance to neutralization in samples with paired vaccine strain and delta variant BoAb measurements. Finally, we screened clinical samples from patients with or without evidence of SARS-CoV-2 exposure by a single-dilution screening version of our assays, finding significant nAb activity only in exposed individuals. Importantly, this completely automated assay can be performed in 4 h to measure neutralizing antibody titers for 16 samples over 8 serial dilutions or, 128 samples at a single dilution with replicates. In principle, these assays offer a rapid, robust, and scalable alternative to time-, skill-, and cost-intensive standard methods for measuring SARS-CoV-2 nAb levels

    Clinical and Demographic Factors Associated With COVID-19, Severe COVID-19, and SARS-CoV-2 Infection in Adults: A Secondary Cross-Protocol Analysis of 4 Randomized Clinical Trials

    Get PDF
    IMPORTANCE: Current data identifying COVID-19 risk factors lack standardized outcomes and insufficiently control for confounders. OBJECTIVE: To identify risk factors associated with COVID-19, severe COVID-19, and SARS-CoV-2 infection. DESIGN, SETTING, AND PARTICIPANTS: This secondary cross-protocol analysis included 4 multicenter, international, randomized, blinded, placebo-controlled, COVID-19 vaccine efficacy trials with harmonized protocols established by the COVID-19 Prevention Network. Individual-level data from participants randomized to receive placebo within each trial were combined and analyzed. Enrollment began July 2020 and the last data cutoff was in July 2021. Participants included adults in stable health, at risk for SARS-CoV-2, and assigned to the placebo group within each vaccine trial. Data were analyzed from April 2022 to February 2023. EXPOSURES: Comorbid conditions, demographic factors, and SARS-CoV-2 exposure risk at the time of enrollment. MAIN OUTCOMES AND MEASURES: Coprimary outcomes were COVID-19 and severe COVID-19. Multivariate Cox proportional regression models estimated adjusted hazard ratios (aHRs) and 95% CIs for baseline covariates, accounting for trial, region, and calendar time. Secondary outcomes included severe COVID-19 among people with COVID-19, subclinical SARS-CoV-2 infection, and SARS-CoV-2 infection. RESULTS: A total of 57 692 participants (median [range] age, 51 [18-95] years; 11 720 participants [20.3%] aged ≥65 years; 31 058 participants [53.8%] assigned male at birth) were included. The analysis population included 3270 American Indian or Alaska Native participants (5.7%), 7849 Black or African American participants (13.6%), 17 678 Hispanic or Latino participants (30.6%), and 40 745 White participants (70.6%). Annualized incidence was 13.9% (95% CI, 13.3%-14.4%) for COVID-19 and 2.0% (95% CI, 1.8%-2.2%) for severe COVID-19. Factors associated with increased rates of COVID-19 included workplace exposure (high vs low: aHR, 1.35 [95% CI, 1.16-1.58]; medium vs low: aHR, 1.41 [95% CI, 1.21-1.65]; P \u3c .001) and living condition risk (very high vs low risk: aHR, 1.41 [95% CI, 1.21-1.66]; medium vs low risk: aHR, 1.19 [95% CI, 1.08-1.32]; P \u3c .001). Factors associated with decreased rates of COVID-19 included previous SARS-CoV-2 infection (aHR, 0.13 [95% CI, 0.09-0.19]; P \u3c .001), age 65 years or older (aHR vs age CONCLUSIONS AND RELEVANCE: In this secondary cross-protocol analysis of 4 randomized clinical trials, exposure and demographic factors had the strongest associations with outcomes; results could inform mitigation strategies for SARS-CoV-2 and viruses with comparable epidemiological characteristics

    Updated considerations in the diagnosis and management of tuberculosis infection and disease: integrating the latest evidence-based strategies

    No full text
    Introduction: Tuberculosis (TB) is a leading infectious cause of global morbidity and mortality, affecting nearly a quarter of the human population and accounting for over 10 million deaths each year. Over the past several decades, TB incidence and mortality have gradually declined, but 2021 marked a threatening reversal of this trend highlighting the importance of accurate diagnosis and effective treatment of all forms of TB. Areas Covered: This review summarizes advances in TB diagnostics, addresses the treatment of people with TB infection and TB disease including recent evidence for treatment regimens for drug-susceptible and drug-resistant TB, and draws attention to special considerations in children and during pregnancy. Expert Opinion: Improvements in diagnosis and management of TB have expanded the available options for TB control. Molecular testing has enhanced the detection of TB disease, but better diagnostics are still needed, particularly for certain populations such as children. Novel treatment regimens have shortened treatment and improved outcomes for people with TB. However, important questions remain regarding the optimal management of TB. Work must continue to ensure the potential of the latest developments is realized for all people affected by TB

    The Impact of Escitalopram on IL-2-Induced Neuroendocrine, Immune, and Behavioral Changes in Patients with Malignant Melanoma: Preliminary Findings

    No full text
    Interleukin (IL)-2, a T-cell cytokine used to treat malignant melanoma, can induce profound depression. To determine whether pretreatment with the antidepressant escitalopram could reduce IL-2-induced neuroendocrine, immune, and neurobehavioral changes, 20 patients with Stage IV melanoma were randomized to either placebo or the serotonin reuptake inhibitor, escitalopram (ESC) 10–20 mg/day, 2 weeks before, and during IL-2 treatment (720 000 units/kg Q8 h × 5 days (1 cycle) every 3 weeks × 4 cycles). Generalized estimation equations were used to examine HPA axis activity (plasma ACTH and cortisol), immune activation (plasma IL-6), and depressive symptoms (Hamilton Depression Rating Scale (HDRS) score). Tolerance of IL-2 treatment (concomitant medications required) and adherence (number of IL-2 doses received) were also assessed. Both the groups (ESC (n=9), placebo (n=11)) exhibited significant IL-2-induced increases in plasma cortisol, IL-6, and depressive symptoms (p<0.05), as well as a temporal trend for increases in plasma ACTH (p=0.054); the effects of age and treatment were not significant. Higher plasma ACTH concentrations were associated with higher depressive symptoms during cycles 1–3 of IL-2 therapy (p<0.01). Although ESC had no significant effects on ACTH, cortisol, IL-6, tolerance of, or adherence to IL-2, ESC treatment was associated with lower depressive symptoms, ie, a maximal difference of ∼3 points on the HDRS, which, though not statistically significant (in part, due to small sample size), represents a clinically significant difference according to the National Institute for Health and Clinical Excellence guidelines. A larger sample size will establish whether antidepressant pretreatment can prevent IL-2-induced neurobehavioral changes

    Comparison of bivalent and monovalent SARS-CoV-2 variant vaccines: the phase 2 randomized open-label COVAIL trial

    No full text
    Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore