10 research outputs found

    Applying EDTA in Chelating Excess Metal Ions to Improve Downstream DNA Recovery from Mine Tailings for Long-Read Amplicon Sequencing of Acidophilic Fungi Communities

    No full text
    The hostile environment of mine tailings contains unique microbial life capable of bioleaching. The metagenomic analysis of such an environment provides an in-depth understanding of the microbial life and its potential, especially in biomining operations. However, DNA recovery from samples collected in those environments is challenging due to the presence of metal ions that interfere with the DNA analysis. A varied concentration of EDTA (4–13 µg/µL) to chelate the metal ions of enriched tailing samples prior to DNA extraction was performed. The results show that 9 µg/µL of EDTA was effective in most samples. However, the increasing concentration of EDTA negatively affected the DNA recovery. The sequencing of the successfully extracted DNA revealed a diverse range of fungal genera, some of which have not been previously reported in tailing or bioleaching applications. The dominant genera include Fodinomyces, Penicillium, Recurvomuces, Trichoderma, and Xenoacremonium; their traits were determined using the FungalTraits database. This study demonstrates the need to include a preliminary metal-chelating step using EDTA before DNA extractions for samples collected from metal-rich environments. It further showed the need for optimization but provided a benchmark range, particularly for tailings. However, we caution that a further EDTA removal step from the extracted DNA should be included to avoid its interferences in downstream applications

    Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies

    No full text
    Mining has advanced primarily through the use of two strategies: pyrometallurgy and hydrometallurgy. Both have been used successfully to extract valuable metals from ore deposits. These strategies, without a doubt, harm the environment. Furthermore, due to decades of excessive mining, there has been a global decline in high-grade ores. This has resulted in a decrease in valuable metal supply, which has prompted a reconsideration of these traditional strategies, as the industry faces the current challenge of accessing the highly sought-after valuable metals from low-grade ores. This review outlines these challenges in detail, provides insights into metal recovery issues, and describes technological advances being made to address the issues associated with dealing with low-grade metals. It also discusses the pragmatic paradigm shift that necessitates the use of biotechnological solutions provided by bioleaching, particularly its environmental friendliness. However, it goes on to criticize the shortcomings of bioleaching while highlighting the potential solutions provided by a bespoke approach that integrates research applications from omics technologies and their applications in the adaptation of bioleaching microorganisms and their interaction with the harsh environments associated with metal ore degradation

    The Potential and Green Chemistry Attributes of Biopesticides for Sustainable Agriculture

    No full text
    Chemotherapy has advanced modern agriculture with costly side effects such as the extinction of beneficial species, resistant pest resurgence, environmental pollution, tainted food consumption, and health implications. Attention is now focused on biopesticides as a solution to the abovementioned disadvantages. Additionally, there is a growing need to understand the range and relative effectiveness of biopesticides in controlling pests and promoting sustainable agriculture. The latter is the major driver of the Sustainable Development Goals (SDGs). In comparison to synthetic pesticides, biopesticides offer nearly similar protection against the most notorious pests, except Albugo candida (oomycetes), Ustilago maydis (fungi), Phytomonas spp. (protozoa), Nacobbus aberrans (nematode), and Cyperus rotundus (weed). This study shows that viruses are more vulnerable to essential oils, nematodes and weeds to natural enemies, herbivorous insects to biochemical insecticides, and plant pathogens to plant-incorporated protectants and microbial pesticides. This work also demonstrates that it is preferable to use plant-derived biopesticides in a field concurrently. Incorporating these findings into large-scale farming via the integrated pest management method would improve the outcome of sustainable agriculture (SA), which connects 11 of the 17 SDGs. Despite their proven efficacy and sustainable attributes, biopesticides have some deficiencies, such as slow action and a short shelf life span, which can be improved by omics, RNA interference, and nano-based technologies. This field of technologies provides relevant prospects for improving existing biopesticides and discovering and developing new bio-controlling agents (BCA)

    The Potential and Green Chemistry Attributes of Biopesticides for Sustainable Agriculture

    No full text
    Chemotherapy has advanced modern agriculture with costly side effects such as the extinction of beneficial species, resistant pest resurgence, environmental pollution, tainted food consumption, and health implications. Attention is now focused on biopesticides as a solution to the abovementioned disadvantages. Additionally, there is a growing need to understand the range and relative effectiveness of biopesticides in controlling pests and promoting sustainable agriculture. The latter is the major driver of the Sustainable Development Goals (SDGs). In comparison to synthetic pesticides, biopesticides offer nearly similar protection against the most notorious pests, except Albugo candida (oomycetes), Ustilago maydis (fungi), Phytomonas spp. (protozoa), Nacobbus aberrans (nematode), and Cyperus rotundus (weed). This study shows that viruses are more vulnerable to essential oils, nematodes and weeds to natural enemies, herbivorous insects to biochemical insecticides, and plant pathogens to plant-incorporated protectants and microbial pesticides. This work also demonstrates that it is preferable to use plant-derived biopesticides in a field concurrently. Incorporating these findings into large-scale farming via the integrated pest management method would improve the outcome of sustainable agriculture (SA), which connects 11 of the 17 SDGs. Despite their proven efficacy and sustainable attributes, biopesticides have some deficiencies, such as slow action and a short shelf life span, which can be improved by omics, RNA interference, and nano-based technologies. This field of technologies provides relevant prospects for improving existing biopesticides and discovering and developing new bio-controlling agents (BCA)

    Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation

    No full text
    Surfactants are a broad category of tensio-active biomolecules with multifunctional properties applications in diverse industrial sectors and processes. Surfactants are produced synthetically and biologically. The biologically derived surfactants (biosurfactants) are produced from microorganisms, with Pseudomonas aeruginosa, Bacillus subtilis Candida albicans, and Acinetobacter calcoaceticus as dominant species. Rhamnolipids, sophorolipids, mannosylerithritol lipids, surfactin, and emulsan are well known in terms of their biotechnological applications. Biosurfactants can compete with synthetic surfactants in terms of performance, with established advantages over synthetic ones, including eco-friendliness, biodegradability, low toxicity, and stability over a wide variability of environmental factors. However, at present, synthetic surfactants are a preferred option in different industrial applications because of their availability in commercial quantities, unlike biosurfactants. The usage of synthetic surfactants introduces new species of recalcitrant pollutants into the environment and leads to undesired results when a wrong selection of surfactants is made. Substituting synthetic surfactants with biosurfactants resolves these drawbacks, thus interest has been intensified in biosurfactant applications in a wide range of industries hitherto considered as experimental fields. This review, therefore, intends to offer an overview of diverse applications in which biosurfactants have been found to be useful, with emphases on petroleum biotechnology, environmental remediation, and the agriculture sector. The application of biosurfactants in these settings would lead to industrial growth and environmental sustainability

    Peculiar Response in the Co-Culture Fermentation of Leuconostoc mesenteroides and Lactobacillus plantarum for the Production of ABE Solvents

    No full text
    Two bacterial strains (CL11A and CL11D) that are capable of ABE fermentation, identified as Leuconostoc mesenteroides and Weissella cibari, were isolated from the soil surrounding the roots of bean plants. Another strain (ZM 3A), identified as Lactobacillus plantarum, which is capable of purely ethanolic fermentation was isolated from sugarcane. Glucose was used as a standard substrate to investigate the performance of these strains in mono—and co-culture fermentation for ABE production. The performance parameters employed in this study were substrate degradation rates, product and metabolite yields, pH changes and microbial growth rates. Both ABE isolates were capable of producing the three solvents but Leuconostoc mesenteroides had a higher specificity for ethanol than Weissella cibari. The co-culturing of Leuconostoc mesenteroides and Lactobacillus plantarum enhanced ethanol production at the expense of both acetone and butanol, and also influenced the final substrate consumption rate and product yield. The experiments indicated the potential of these niche environments for the isolation of ABE-producing microorganisms. This study contributes to the formulation of ideal microbial co-culture and consortia fermentation, which seeks to maximize the yield and production rates of favored products

    Trends and Applications of Omics Technologies to Functional Characterisation of Enzymes and Protein Metabolites Produced by Fungi

    No full text
    Identifying and adopting industrial applications for proteins and enzymes derived from fungi strains have been at the focal point of several studies in recent times. To facilitate such studies, it is necessary that advancements and innovation in mycological and molecular characterisation are concomitant. This review aims to provide a detailed overview of the necessary steps employed in both qualitative and quantitative research using the omics technologies that are pertinent to fungi characterisation. This stems from the understanding that data provided from the functional characterisation of fungi and their metabolites is important towards the techno-economic feasibility of large-scale production of biological products. The review further describes how the functional gaps left by genomics, internal transcribe spacer (ITS) regions are addressed by transcriptomics and the various techniques and platforms utilised, including quantitive reverse transcription polymerase chain reaction (RT-qPCR), hybridisation techniques, and RNA-seq, and the insights such data provide on the effect of environmental changes on fungal enzyme production from an expressional standpoint. The review also offers information on the many available bioinformatics tools of analysis necessary for the analysis of the overwhelming data synonymous with the omics approach to fungal characterisation

    Physico-Chemical and Metagenomic Profile Analyses of Animal Manures Routinely Used as Inocula in Anaerobic Digestion for Biogas Production

    No full text
    Anaerobic digestion (AD) of organic waste is considered a sustainable solution to energy shortage and waste management challenges. The process is facilitated by complex communities of micro-organisms, yet most wastes do not have these and thus need microbial inoculation using animal manures to initiate the process. However, the degradation efficiency and methane yield achieved in using different inocula vary due to their different microbial diversities. This study used metagenomics tools to compare the autochthonous microbial composition of cow, pig, chicken, and horse manures commonly used for biogas production. Cows exhibited the highest carbon utilisation (>30%) and showed a carbon to nitrogen ratio (C/N) favourable for microbial growth. Pigs showed the least nitrogen utilisation (<3%) which explains their low C/N whilst horses showed the highest nitrogen utilisation (>40%), which explains its high C/N above the optimal range of 20–30 for efficient AD. Manures from animals with similar gastrointestinal tract (GIT) physiologies were observed to largely harbour similar microbial communities. Conversely, some samples from animals with different GITs also shared common microbial communities plausibly because of similar diets and rearing conditions. Insights from this study will lay a foundation upon which in-depth studies of AD metabolic pathways and strategies to boost methane production through efficient catalysis can be derived

    Occurrences and implications of pathogenic and antibiotic-resistant bacteria in different stages of drinking water treatment plants and distribution systems

    No full text
    Different stages of drinking water treatment plants (DWTPs) play specific roles in diverse contaminants’ removal present in natural water sources. Although the stages are recorded to promote adequate treatment of water, the occurrence of pathogenic bacteria (PB) and antibiotic-resistant bacteria (ARB) in the treated water and the changes in their diversity and abundance as it passed down to the end users through the drinking water distribution systems (DWDSs), is a great concern, especially to human health. This could imply that the different stages and the distribution system provide a good microenvironment for their growth. Hence, it becomes pertinent to constantly monitor and document the diversity of PB and ARB present at each stage of the treatment and distribution system. This review aimed at documenting the occurrence of PB and ARB at different stages of treatment and distribution systems as well as the implication of their occurrence globally. An exhaustive literature search from Web of Science, Science-Direct database, Google Scholar, Academic Research Databases like the National Center for Biotechnology Information, Scopus, and SpringerLink was done. The obtained information showed that the different treatment stages and distribution systems influence the PB and ARB that proliferate. To minimize the human health risks associated with the occurrence of these PB, the present review, suggests the development of advanced technologies that can promote quick monitoring of PB/ARB at each treatment stage and distribution system as well as reduction of the cost of environomics analysis to promote better microbial analysis
    corecore