42 research outputs found

    Long single crystalline α-Mn2O3 nanorods: facile synthesis and photocatalytic application

    Get PDF
    Single crystalline cubic sesquioxide bixbyite α-Mn2O3 nanorods have been synthesized successfully by a simple, low cost, environmental benign hydrothermal route. As synthesized γ-MnOOH were calcined at 600 °C to obtain α-Mn2O3 nanorods, which were further subjected to various characterizations. The alpha manganese sesquioxide cubic bixbyite-type oxide formation was confirmed by the XRD studies. The surface morphology and elemental analysis were explored by SEM with EDX studies, respectively. High-resolution transmission electron microscopy HRTEM and SAED showed that the α-Mn2O3 nanorods were single crystalline and were grown along the C-axis of the crystal plane. The UV–visible spectrum indicated that the absorption was prominent in the ultraviolet region. In addition, PL spectrum result of α-Mn2O3 nanorods recommended possible photocatalytic applications. The photocatalyst ensures a new platform for the decolorization of dye molecules of the harmful cationic dyes like methylene blue and rhodamine B. Possible growth mechanism and photocatalytic dye degradation mechanism were proposed for synthesized α-Mn2O3 nanorods

    Performance evaluation of a low-cost, novel vanadium nitride xerogel (VNXG) as a platinum-free electrocatalyst for dye-sensitized solar cells

    Get PDF
    A vanadium nitride xerogel (VNXG) was synthesised by a simple and effective method of ammonialising a vanadium pentoxide xerogel at a higher temperature. Xerogel-structured materials possess salient features such as high surface area, tunable porosity and pore size that result in enhancing the catalytic activity by a fast electron-transport pathway and increase electrolyte diffusion channels. Metal nitrides are reported as promising alternate low-cost counter electrodes to replace the conventional and expensive platinum (Pt) counter electrode. Though few studies are reported on aerogel-based CEs for DSSCs, the present work is the first attempt to synthesize and evaluate the performance of xerogel-structured metal nitrides as counter electrode materials for dye-sensitized solar cells. The synthesized material was well characterized for its structural and morphological characteristics and chemical constituents by photoelectron spectroscopy. Finally, the VNXG was tested for its electrocatalytic performance as a choice of counter electrodes for dye-sensitized solar cells (DSSCs). The photo-current studies were performed under standard 1 SUN, class AAA-simulated illumination with AM1.5G. The consolidated results revealed that the vanadium nitride xerogel exhibited good photocatalytic activity and low charge transfer resistance. This identified it as a promising low-cost counter electrode (CE) material for dye-sensitized solar cells. The photo-current conversion efficiency of the vanadium nitride xerogel CE-based DSSC reached 5.94% comparable to that of the conventional thermal decomposed Pt CE-based DSSC, 7.38% with the same iodide/triiodide electrolyte system. Moreover, the 28 days stability study of VNXG CE DSSCs provided an appreciably stable performance with 37% decrement in the PCE under the same test condition

    Dopants for enhanced performance of tin-based perovskite solar cells—a short review

    Get PDF
    Lead-based perovskite solar cells had reached a bottleneck and demonstrated significant power conversion efficiency (PCE) growth matching the performance of traditional polycrystalline silicon solar cells. Lead-containing perovskite solar cell technology is on the verge of commercialization and has huge potential to replace silicon solar cells, but despite the very promising future of these perovskite solar cells, the presence of water-soluble toxic lead content is a growing concern in the scientific community and a major bottleneck for their commercialization. The less toxic, tin-based perovskite solar cells are promising alternatives for lead-free perovskite solar cells. Like lead-based perovskite, the general chemical formula composition of tin-based perovskite is ASnX3, where A is a cation and X is an anion (halogen). It is evident that tin-based perovskites, being less-toxic with excellent photoelectric properties, show respectable performance. Recently, numerous studies reported on the fabrication of Sn-based perovskite solar cells. However, the stability of this novel lead-free alternative material remains a big concern. One of the many ways to stabilize these solar cells includes addition of dopants. In this context, this article summarizes the most important fabrication routes employing dopants that have shown excellent stability for tin-based perovskite photovoltaics and elaborates the prospects of lead-free, tin based stable perovskite photovoltaics

    Cu based Metal Organic Framework (Cu-MOF) for electrocatalytic hydrogen evolution reaction

    Get PDF
    Hydrogen production using novel catalysts is regarded as one of the most needed technology for the future economic needs and water splitting to give H2 gas, which is a challenging task for large-scale production. This work reports the synthesis of Meso-Cu-BTC metal organic framework and further used for understanding its role in electrochemical hydrogen evolution reaction (HER) in 1 M NaOH solution. Meso-Cu-BTC electrocatalyst showed a less overpotential of 89.32 mV and an onset potential of 25 mV with an appreciable current density. Results show a low Tafel slope of 33.41 mVdec−1 and long-term durability. Thus, the overall results show that Meso-Cu-BTC acted as a good candidate for electrocatalysis towards hydrogen evolution

    MXene-Embedded Porous Carbon-Based Cu<sub>2</sub>O Nanocomposites for Non-Enzymatic Glucose Sensors

    Get PDF
    This work explores the use of MXene-embedded porous carbon-based Cu2O nanocomposite (Cu2O/M/AC) as a sensing material for the electrochemical sensing of glucose. The composite was prepared using the coprecipitation method and further analyzed for its morphological and structural characteristics. The highly porous scaffold of activated (porous) carbon facilitated the incorporation of MXene and copper oxide inside the pores and also acted as a medium for charge transfer. In the Cu2O/ M/AC composite, MXene and Cu2O influence the sensingparameters, which were confirmed using electrochemical techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and amperometric analysis. The prepared composite shows two sets of linear ranges for glucose with a limit of detection (LOD) of 1.96 μM. The linear range was found to be 0.004 to 13.3 mM and 15.3 to 28.4 mM, with sensitivity values of 430.3 and 240.5 μA mM−1 cm−2, respectively. These materials suggest that the prepared Cu2O/M/AC nanocomposite can be utilized as a sensing material for non-enzymatic glucose sensors

    Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials.

    Get PDF
    Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn2+) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges

    Zinc associated nanomaterials and their intervention in emerging respiratory viruses:Journey to the field of biomedicine and biomaterials

    Get PDF
    Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn(2+)) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges

    Temperature Optimized Ammonia and Ethanol Sensing Using Ce Doped Tin Oxide Thin Films in a Novel Flow Metric Gas Sensing Chamber

    No full text
    A simple process of gas sensing is represented here using Ce doped tin oxide nanomaterial based thin film sensor. A novel flow metric gas chamber has been designed and utilized for gas sensing. Doping plays a vital role in enhancing the sensing properties of nanomaterials. Ce doped tin oxide was prepared by hydrothermal method and the same has been used to fabricate a thin film for sensing. The microstructure and morphology of the prepared materials were analysed by SEM, XRD, and FTIR analysis. The SEM images clearly show that doping can clamp down the growth of the large crystallites and can lead to large agglomeration spheres. Thin film gas sensors were formed from undoped pure SnO2 and Ce doped SnO2. The sensors were exposed to ammonia and ethanol gases. The responses of the sensors to different concentrations (50–500 ppm) of ammonia and ethanol at different operating temperatures (225°C–500°C) were studied. Results show that a good sensitivity towards ammonia was obtained with Ce doped SnO2 thin film sensor at an optimal operating temperature of 325°C. The Ce doped sensor also showed good selectivity towards ammonia when compared with ethanol. Pure SnO2 showed good sensitivity with ethanol when compared with Ce doped SnO2 thin film sensor. Response time of the sensor and its stability were also studied

    Carbon-Protected BiVO<sub>4</sub>—Cu<sub>2</sub>O Thin Film Tandem Cell for Solar Water Splitting Applications

    No full text
    Carbon-protected BiVO4 photoanode and Cu2O photocathode tandem photoelectrochemical (PEC) system has been explored to reduce surface recombination and enhance the stability of the photoelectrodes. In addition to the carbon layer, the electrodeposited FeOOH nanolayer and drop-casted MoS2 co-catalyst layer on the photoanode and photocathode, respectively improve the reaction kinetics. The optimized photoanode (Mo-BiVO4/C/FeOOH) and photocathode (Cu2O/C/MoS2) produces current densities of ~1.22 mA cm−2 at 1.23 V vs. RHE and ~−1.48 mA cm−2 at 0 V vs. RHE, respectively. The obtained photocurrent is higher than bare photoelectrodes without a carbon layer. Finally, a tandem cell has been constructed, and an unassisted current density of ~0.107 mA cm−2 is obtained for a carbon-protected BiVO4–Cu2O tandem PEC cell at zero bias. The improved stability and enhanced photocurrent of the carbon protective layer are attributed to its better charge transfer resistance and minimized surface defects. Carbon protective layer can be a viable option to improve the stability of photoelectrodes in aqueous media
    corecore