133 research outputs found
scite: A Smart Citation Index that Displays the Context of Citations and Classifies Their Intent Using Deep Learning
Citation indices are tools used by the academic community for research and research evaluation that aggregate scientific literature output and measure impact by collating citation counts. Citation indices help measure the interconnections between scientific papers but fall short because they fail to communicate contextual information about a citation. The use of citations in research evaluation without consideration of context can be problematic because a citation that presents contrasting evidence to a paper is treated the same as a citation that presents supporting evidence. To solve this problem, we have used machine learning, traditional document ingestion methods, and a network of researchers to develop a “smart citation index” called scite, which categorizes citations based on context. Scite shows how a citation was used by displaying the surrounding textual context from the citing paper and a classification from our deep learning model that indicates whether the statement provides supporting or contrasting evidence for a referenced work, or simply mentions it. Scite has been developed by analyzing over 25 million full-text scientific articles and currently has a database of more than 880 million classified citation statements. Here we describe how scite works and how it can be used to further research and research evaluation
Phase state dependent current fluctuations in pure lipid membranes
Current fluctuations in pure lipid membranes have been shown to occur under
the influence of transmembrane electric fields (electroporation) as well as a
result from structural rearrangements of the lipid bilayer during phase
transition (soft perforation). We demonstrate that the ion permeability during
lipid phase transition exhibits the same qualitative temperature dependence as
the macroscopic heat capacity of a D15PC/DOPC vesicle suspension. Microscopic
current fluctuations show distinct characteristics for each individual phase
state. While current fluctuations in the fluid phase show spike-like behaviour
of short time scales (~ 2ms) with a narrow amplitude distribution, the current
fluctuations during lipid phase transition appear in distinct steps with time
scales in the order of ~ 20ms. 1 We propose a theoretical explanation for the
origin of time scales and permeability based on a linear relationship between
lipid membrane susceptibilities and relaxation times in the vicinity of the
phase transition.Comment: 22 pages including 6 figure
The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes
In the proximity of melting transitions of artificial and biological
membranes fluctuations in enthalpy, area, volume and concentration are
enhanced. This results in domain formation, changes of the elastic constants,
changes in permeability and slowing down of relaxation processes. In this study
we used pressure perturbation calorimetry to investigate the relaxation time
scale after a jump into the melting transition regime of artificial lipid
membranes. This time corresponds to the characteristic rate of domain growth.
The studies were performed on single-component large unilamellar and
multilamellar vesicle systems with and without the addition of small molecules
such as general anesthetics, neurotransmitters and antibiotics. These drugs
interact with membranes and affect melting points and profiles. In all systems
we found that heat capacity and relaxation times are related to each other in a
simple manner. The maximum relaxation time depends on the cooperativity of the
heat capacity profile and decreases with a broadening of the transition. For
this reason the influence of a drug on the time scale of domain formation
processes can be understood on the basis of their influence on the heat
capacity profile. This allows estimations of the time scale of domain formation
processes in biological membranes.Comment: 12 pages, 6 figure
Longitudinal multi-centre brain imaging studies: guidelines and practical tips for accurate and reproducible imaging endpoints and data sharing
Abstract Background Research involving brain imaging is important for understanding common brain diseases. Study endpoints can include features and measures derived from imaging modalities, providing a benchmark against which other phenotypical data can be assessed. In trials, imaging data provide objective evidence of beneficial and adverse outcomes. Multi-centre studies increase generalisability and statistical power. However, there is a lack of practical guidelines for the set-up and conduct of large neuroimaging studies. Methods We address this deficit by describing aspects of study design and other essential practical considerations that will help researchers avoid common pitfalls and data loss. Results The recommendations are grouped into seven categories: (1) planning, (2) defining the imaging endpoints, developing an imaging manual and managing the workflow, (3) performing a dummy run and testing the analysis methods, (4) acquiring the scans, (5) anonymising and transferring the data, (6) monitoring quality, and (7) using structured data and sharing data. Conclusions Implementing these steps will lead to valuable and usable data and help to avoid imaging data wastage
Calcium electroporation and electrochemotherapy for cancer treatment:Importance of cell membrane composition investigated by lipidomics, calorimetry and in vitro efficacy
Abstract Calcium electroporation is a novel anti-cancer treatment investigated in clinical trials. We explored cell sensitivity to calcium electroporation and electroporation with bleomycin, using viability assays at different time and temperature points, as well as heat calorimetry, lipidomics, and flow cytometry. Three cell lines: HT29 (colon cancer), MDA-MB231 (breast cancer), and HDF-n (normal fibroblasts) were investigated for; (a) cell survival dependent on time of addition of drug relative to electroporation (1.2 kV/cm, 8 pulses, 99 µs, 1 Hz), at different temperatures (37 °C, 27 °C, 17 °C); (b) heat capacity profiles obtained by differential scanning calorimetry without added calcium; (c) lipid composition by mass spectrometry; (d) phosphatidylserine in the plasma membrane outer leaflet using flow cytometry. Temperature as well as time of drug administration affected treatment efficacy in HT29 and HDF-n cells, but not MDA-MB231 cells. Interestingly the HT29 cell line displayed a higher phase transition temperature (approximately 20 °C) versus 14 °C (HDF-n) and 15 °C (MDA-MB231). Furthermore the HT29 cell membranes had a higher ratio of ethers to esters, and a higher expression of phosphatidylserine in the outer leaflet. In conclusion, lipid composition and heat capacity of the membrane might influence permeabilisation of cells and thereby the effect of calcium electroporation and electrochemotherapy
Recommended from our members
Early produced signs are iconic. Evidence from Turkish Sign Language
Contains fulltext :
175395.pdf (publisher's version ) (Open Access)The 39th Annual Conference of the Cognitive Science Society (CogSci 2017), 26 juli 201
- …