248 research outputs found

    Mechanism of Transcription Anti-termination in Human Mitochondria.

    Get PDF
    In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream sliding clamp, providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA

    Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis.

    Get PDF
    Anemic Nan mice carry a mutation (E339D) in the second zinc finger of erythroid transcription factor KLF1. Nan-KLF1 fails to bind a subset of normal KLF1 targets and ectopically binds a large set of genes not normally engaged by KLF1, resulting in a corrupted fetal liver transcriptome. Here, we performed RNAseq using flow cytometric-sorted spleen erythroid precursors from adult Nan and WT littermates rendered anemic by phlebotomy to identify global transcriptome changes specific to the Nan Klf1 mutation as opposed to anemia generally. Mutant Nan-KLF1 leads to extensive and progressive transcriptome corruption in adult spleen erythroid precursors such that stress erythropoiesis is severely compromised. Terminal erythroid differentiation is defective in the bone marrow as well. Principle component analysis reveals two major patterns of differential gene expression predicting that defects in basic cellular processes including translation, cell cycle, and DNA repair could contribute to disordered erythropoiesis and anemia in Nan. Significant erythroid precursor stage specific changes were identified in some of these processes in Nan. Remarkably, however, despite expression changes in large numbers of associated genes, most basic cellular processes were intact in Nan indicating that developing red cells display significant physiological resiliency and establish new homeostatic set points in vivo

    Ice and ocean velocity in the Arctic marginal ice zone: Ice roughness and momentum transfer

    Get PDF
    The interplay between sea ice concentration, sea ice roughness, ocean stratification, and momentum transfer to the ice and ocean is subject to seasonal and decadal variations that are crucial to understanding the present and future air-ice-ocean system in the Arctic. In this study, continuous observations in the Canada Basin from March through December 2014 were used to investigate spatial differences and temporal changes in under-ice roughness and momentum transfer as the ice cover evolved seasonally. Observations of wind, ice, and ocean properties from four clusters of drifting instrument systems were complemented by direct drill-hole measurements and instrumented overhead flights by NASA operation IceBridge in March, as well as satellite remote sensing imagery about the instrument clusters. Spatially, directly estimated ice-ocean drag coefficients varied by a factor of three with rougher ice associated with smaller multi-year ice floe sizes embedded within the first-year-ice/multi-year-ice conglomerate. Temporal differences in the ice-ocean drag coefficient of 20–30% were observed prior to the mixed layer shoaling in summer and were associated with ice concentrations falling below 100%. The ice-ocean drag coefficient parameterization was found to be invalid in September with low ice concentrations and small ice floe sizes. Maximum momentum transfer to the ice occurred for moderate ice concentrations, and transfer to the ocean for the lowest ice concentrations and shallowest stratification. Wind work and ocean work on the ice were the dominant terms in the kinetic energy budget of the ice throughout the melt season, consistent with free drift conditions. Overall, ice topography, ice concentration, and the shallow summer mixed layer all influenced mixed layer currents and the transfer of momentum within the air-ice-ocean system. The observed changes in momentum transfer show that care must be taken to determine appropriate parameterizations of momentum transfer, and imply that the future Arctic system could become increasingly seasonal

    Fabrication and Imaging of Protein Crossover Structures

    Get PDF
    ABSTRACT Proteins often deform, dehydrate or otherwise denature when adsorbed or patterned directly onto an inorganic substrate, thus losing specificity and biofunctionality. One method used to maintain function is to pattern the protein of interest directly onto another underlying protein or polypeptide that acts as a buffer layer between the substrate and the desired protein. We have used microcontact printing (µcp) to cross-stamp orthogonal linear arrays of two different proteins (e.g., IgG, poly-lysine, protein A) onto glass substrates. This created three separate types of protein-substrate microenvironments, including crossover structures of protein one on protein two. We report preliminary fluorescent microscopy and scanning force microscopy characterization of these structures, including commonly encountered structural defects

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Design programmes to maximise participant engagement: a predictive study of programme and participant characteristics associated with engagement in paediatric weight management.

    Get PDF
    BACKGROUND: Approximately 50% of paediatric weight management (WM) programme attendees do not complete their respective programmes. High attrition rates compromise both programme effectiveness and cost-efficiency. Past research has examined pre-intervention participant characteristics associated with programme (non-)completion, however study samples are often small and not representative of multiple demographics. Moreover, the association between programme characteristics and participant engagement is not well known. This study examined participant and programme characteristics associated with engagement in a large, government funded, paediatric WM programme. Engagement was defined as the family's level of participation in the WM programme. METHODS: Secondary data analysis of 2948 participants (Age: 10.44 ± 2.80 years, BMI: 25.99 ± 5.79 kg/m(2), Standardised BMI [BMI SDS]: 2.48 ± 0.87 units, White Ethnicity: 70.52%) was undertaken. Participants attended a MoreLife programme (nationwide WM provider) between 2009 and 2014. Participants were classified into one of five engagement groups: Initiators, Late Dropouts, Low- or High- Sporadic Attenders, or Completers. Five binary multivariable logistic regression models were performed to identify participant (n = 11) and programmatic (n = 6) characteristics associated with an engagement group. Programme completion was classified as ≥70% attendance. RESULTS: Programme characteristics were stronger predictors of programme engagement than participant characteristics; particularly small group size, winter/autumn delivery periods and earlier programme years (proxy for scalability). Conversely, participant characteristics were weak predictors of programme engagement. Predictors varied between engagement groups (e.g. Completers, Initiators, Sporadic Attenders). 47.1% of participants completed the MoreLife programme (mean attendance: 59.4 ± 26.7%, mean BMI SDS change: -0.15 ± 0.22 units), and 21% of those who signed onto the programme did not attend a session. CONCLUSIONS: As WM services scale up, the efficacy and fidelity of programmes may be reduced due to increased demand and lower financial resource. Further, limiting WM programme groups to no more than 20 participants could result in greater engagement. Baseline participant characteristics are poor and inconsistent predictors of programme engagement. Thus, future research should evaluate participant motives, expectations, and barriers to attending a WM programme to enhance our understanding of participant WM engagement. Finally, we suggest that session-by-session attendance is recorded as a minimum requirement to improve reporting transparency and enhance external validity of study findings

    A Longitudinal Analysis of Stress in African American Youth: Predictors and Outcomes of Stress Trajectories

    Full text link
    Few researchers have studied trajectories of stress over time in relation to psychosocial outcomes and behaviors among adolescents. A sample of African American adolescents were assessed longitudinally on perceived stress, psychological well-being, support, antisocial behaviors, and academic success. Patterns of stress over 4 time points were developed using a cluster-analytic approach. Differences among the trajectory clusters were examined using psychosocial outcomes and behaviors. Adolescents with chronic levels of stress reported more anxiety and depression, engaged in antisocial behaviors, and reported less active coping than youth in other trajectories. Adolescents with low levels of stress over time reported fewer psychological problems, perceived more social support, and were more likely to graduate from high school than those with higher stress levels over time. We also found that an increase in stress coincided with a lack of support and more psychological problems over time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45295/1/10964_2004_Article_465298.pd

    Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling

    Get PDF
    Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes
    corecore